Treffer: Artificial intelligence-based pre-conception stage construction budget decision-making model and tool for residential buildings.
Weitere Informationen
Purpose: Developing a reliable cost estimate at the early stage of construction projects is challenging due to inadequate project information. Most of the information during this stage is qualitative, posing additional challenges to achieving accurate cost estimates. Additionally, there is a lack of tools that use qualitative project information and forecast the budgets required for project completion. This research, therefore, aims to develop a model for setting project budgets (excluding land) during the pre-conceptual stage of residential buildings, where project information is mainly qualitative. Design/methodology/approach: Due to the qualitative nature of project information at the pre-conception stage, a natural language processing model, DistilBERT (Distilled Bidirectional Encoder Representations from Transformers), was trained to predict the cost range of residential buildings at the pre-conception stage. The training and evaluation data included 63,899 building permit activity records (2021–2022) from the Victorian State Building Authority, Australia. The input data comprised the project description of each record, which included project location and basic material types (floor, frame, roofing, and external wall). Findings: This research designed a novel tool for predicting the project budget based on preliminary project information. The model achieved 79% accuracy in classifying residential buildings into three cost_classes ($100,000-$300,000, $300,000-$500,000, $500,000-$1,200,000) and F1-scores of 0.85, 0.73, and 0.74, respectively. Additionally, the results show that the model learnt the contextual relationship between qualitative data like project location and cost. Research limitations/implications: The current model was developed using data from Victoria state in Australia; hence, it would not return relevant outcomes for other contexts. However, future studies can adopt the methods to develop similar models for their context. Originality/value: This research is the first to leverage a deep learning model, DistilBERT, for cost estimation at the pre-conception stage using basic project information like location and material types. Therefore, the model would contribute to overcoming data limitations for cost estimation at the pre-conception stage. Residential building stakeholders, like clients, designers, and estimators, can use the model to forecast the project budget at the pre-conception stage to facilitate decision-making. [ABSTRACT FROM AUTHOR]
Copyright of Engineering Construction & Architectural Management (09699988) is the property of Emerald Publishing Limited and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)