Treffer: Building a Robust CI/CD Pipeline for AI-Powered Cloud Applications.
Weitere Informationen
The deployment of AI applications in cloud environments presents unique challenges that traditional CI/CD pipelines fail to address, particularly in model versioning, data quality management, and system integration. This paper presents a comprehensive framework for building AI-specific CI/CD pipelines that effectively bridge these gaps. Through empirical analysis of successful implementations, we demonstrate how specialized pipeline architectures incorporating automated testing, intelligent resource allocation, and continuous monitoring can reduce deployment incidents by 37% while improving model reliability by 42%. Our findings show that organizations adopting these practices achieve 65% higher success rates in production deployments and reduce operational overhead by 41%. The proposed approach provides a practical roadmap for organizations seeking to streamline their AI deployment processes while maintaining robust security and performance standards. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Computer Science & Technology Studies is the property of Al-Kindi Center for Research & Development and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)