Treffer: Marine Voyage Optimization and Weather Routing with Deep Reinforcement Learning.
Weitere Informationen
Marine voyage optimization determines the optimal route and speed to ensure timely arrival. The problem becomes particularly complex when incorporating a dynamic environment, such as future expected weather conditions along the route and unexpected disruptions. This study explores two model-free Deep Reinforcement Learning (DRL) algorithms: (i) a Double Deep Q Network (DDQN) and (ii) a Deep Deterministic Policy Gradient (DDPG). These algorithms are computationally costly, so we split optimization into an offline phase (costly pre-training for a route) and an online phase where the algorithms are fine-tuned as updated weather data become available. Fine tuning is quick enough for en-route adjustments and for updating the offline planning for different dates where the weather might be very different. The models are compared to classical and heuristic methods: the DDPG achieved a 4% lower fuel consumption than the DDQN and was only outperformed by Tabu Search by 1%. Both DRL models demonstrate high adaptability to dynamic weather updates, achieving up to 12% improvement in fuel consumption compared to the distance-based baseline model. Additionally, they are non-graph-based and self-learning, making them more straightforward to extend and integrate into future digital twin-driven autonomous solutions, compared to traditional approaches. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Marine Science & Engineering is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)