Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: A Dockerized Approach to Dynamic Endpoint Management for RESTful Application Programming Interfaces in Internet of Things Ecosystems.

Title:
A Dockerized Approach to Dynamic Endpoint Management for RESTful Application Programming Interfaces in Internet of Things Ecosystems.
Source:
Sensors (14248220); May2025, Vol. 25 Issue 10, p2993, 29p
Database:
Complementary Index

Weitere Informationen

The growth of IoT devices has generated an increasing demand for effective, agile, and scalable deployment frameworks. Traditional IoT architectures are generally strained by interoperability, real-time responsiveness, and resource optimization due to inherent complexity in managing heterogeneous devices and large-scale deployments. While containerization and dynamic API frameworks are seen as solutions, current methodologies are founded primarily on static API architectures that cannot be adapted in real time with evolving data structures and communication needs. Dynamic routing has been explored, but current solutions lack database schema flexibility and endpoint management. This work presents a Dockerized framework that integrates Dynamic RESTful APIs with containerization to achieve maximum flexibility and performance in IoT configurations. With the use of FastAPI for asynchronous processing, the framework dynamically scales API schemas as per real-time conditions, achieving maximum device interaction efficiency. Docker provides guaranteed consistent, portable deployment across different environments. An emulated IoT environment was used to measure significant performance parameters, including functionality, throughput, response time, and scalability. The evaluation shows that the framework maintains high throughput, with an error rate of 3.11% under heavy loads and negligible latency across varying traffic conditions, ensuring fast response times without compromising system integrity. The framework demonstrates significant advantages in IoT scenarios requiring the addition of new parameters or I/O components where dynamic endpoint generation enables immediate monitoring without core application changes. Architectural decisions involving RESTful paradigms, microservices, and containerization are also discussed in this paper to ensure enhanced flexibility, modularity, and performance. The findings provide a valuable addition to dynamic IoT API framework design, illustrating how dynamic, Dockerized RESTful APIs can improve the efficiency and flexibility of IoT systems. [ABSTRACT FROM AUTHOR]

Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)