Treffer: Large Language Model-Assisted Deep Reinforcement Learning from Human Feedback for Job Shop Scheduling.
Weitere Informationen
The job shop scheduling problem (JSSP) is a classical NP-hard combinatorial optimization challenge that plays a crucial role in manufacturing systems. Deep reinforcement learning has shown great potential in solving this problem. However, it still has challenges in reward function design and state feature representation, which makes it suffer from slow policy convergence and low learning efficiency in complex production environments. Therefore, a human feedback-based large language model-assisted deep reinforcement learning (HFLLMDRL) framework is proposed to solve this problem, in which few-shot prompt engineering by human feedback is utilized to assist in designing instructive reward functions and guiding policy convergence. Additionally, a self-adaptation symbolic visualization Kolmogorov–Arnold Network (KAN) is integrated as the policy network in DRL to enhance state feature representation, thereby improving learning efficiency. Experimental results demonstrate that the proposed framework significantly boosts both learning performance and policy convergence, presenting a novel approach to the JSSP. [ABSTRACT FROM AUTHOR]
Copyright of Machines is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)