Treffer: Efficiency analysis of parallel swarm intelligence using rapid range search in Euclidean space.
Weitere Informationen
Swarm intelligence algorithms are widely recognized for their efficiency in solving complex optimization problems. However, their scalability poses challenges, particularly with large problem instances. This study investigates the time performance of swarm intelligence algorithms by leveraging parallel computing on both central processing units (CPUs) and graphics processing units (GPUs). The focus is on optimizing algorithms designed for range search in Euclidean space to enhance GPU execution. Additionally, the study explores swarm-inspired solutions specifically tailored for GPU implementations, emphasising improving efficiency in video rendering and computer simulations. The findings highlight the potential of GPU-accelerated swarm intelligence solutions to address scalability challenges in large-scale optimization, offering promising advancements in the field. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Electronics & Telecommunications is the property of Polish Academy of Sciences and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)