Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Benchmarking machine learning algorithm for stunting risk prediction in Indonesia.

Title:
Benchmarking machine learning algorithm for stunting risk prediction in Indonesia.
Source:
Bulletin of Electrical Engineering & Informatics; Jun2025, Vol. 14 Issue 3, p2252-2263, 12p
Database:
Complementary Index

Weitere Informationen

Stunting is a condition caused by poor nutrition that results in below-average height development, potentially leading to long-term effects such as intellectual disability, low learning abilities, and an increased risk of developing chronic diseases. One effort to reduce stunting is to apply a machine learning algorithm with a data science approach to develop risk prediction models based on factors in stunting. The study used the current cross industry standard process for data mining (CRISP-DM) framework to gain insight and analyzed 1561 records of data collected from the Indonesia family life survey (IFLS) for the prediction models. Two sampling methods, random undersampling, and oversampling synthetic minority oversampling technique (SMOTE), were employed and compared to overcome the data imbalance problem. Four machine learning classifier algorithms were trained and tested to determine the best-performing model. The experiment results showed that the algorithms yielded an average accuracy of more than 75%. Using the undersampling technique, the accuracy obtained by logistic regression, k-nearest neighbor (KNN), support vector classifier (SVC), and decision tree classifier were 95.21%, 78.91%, 92.97%, and 86.26% respectively. Meanwhile, the oversampling technique reached 96.17%, 88.50%, 93.29%, and 95.21%, respectively. Logistic regression emerges as the best classification, with oversampling yielding superior performance. [ABSTRACT FROM AUTHOR]

Copyright of Bulletin of Electrical Engineering & Informatics is the property of Institute of Advanced Engineering & Science and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)