Treffer: A Machine Learning-Based Hybrid Encryption Approach for Securing Messages in Software-Defined Networking.
Weitere Informationen
The security of a network is based on the foundation of confidentiality, integrity, and availability, often referred to as the CIA triad. The privacy of data over a network, maintained by confidentiality, has long been one of the major issues in network settings. With the decoupling of the data plane and control plane in the software-defined networking (SDN) environment, this challenge is significantly amplified. This paper aims to address the challenges of confidentiality in SDN by introducing a genetic algorithm-based hybrid encryption network policy to secure messages across the network. The proposed approach achieved an average entropy of 0.989, revealing a significant improvement in the strength of the encryption with the hybrid mechanism. However, the method exhibited processing overhead, significantly increasing the transmission time for encrypted messages compared to unencrypted transmission. Compared to standalone AES, DES, and RSA, this approach shows better encryption randomness, but a trade-off between security and network performance is evident in the absence of load-balancing techniques. [ABSTRACT FROM AUTHOR]
Copyright of Network (2673-8732) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)