Treffer: A Hybrid Approach for Mobile Phone Recommendation using Content-Based and Collaborative Filtering.
Weitere Informationen
INTRODUCTION: The number of manufacturers and models accessible in the market has increased due to the growing trend of mobile phone use. Customers now have the difficult task of selecting a phone that both fits their demands and offers good value. Although recommendation algorithms already exist, they frequently overlook the various aspects that buyers take into account before making a phone purchase. Furthermore, recommendation systems are now widely used tools for using huge data and customising suggestions according to user preferences. OBJECTIVES: Machine learning techniques like content-based filtering and collaborative filtering have demonstrated promising outcomes among the different methodologies proposed for constructing these kinds of systems. A hybrid recommendation system that combines the benefits of collaborative filtering with content-based filtering is presented in this paper for mobile phone choosing. The suggested method intends to deliver more precise and customised recommendations by utilising user behaviour patterns and mobile phone content properties. METHODS: The system makes better recommendations by analysing user preferences and phone similarities using the aforementioned machine learning methods. The technology that has been built exhibits its capability to aid customers in selecting a mobile phone with knowledge. RESULTS: With the effective Hybridization process we have obtained the best possible scores of MSE, MAE and RMSE. CONCLUSION: To sum up, the growing intricacy of the mobile phone industry and the abundance of options have demanded the creation of increasingly advanced recommendation systems. This work presents a hybrid recommendation system that efficiently blends collaborative and content-based filtering techniques to provide users with more tailored, superior recommendations. This approach has the ability to enable customers to choose the best mobile phone for their needs by taking into account both user behaviour and mobile phone characteristics. [ABSTRACT FROM AUTHOR]
Copyright of EAI Endorsed Transactions on Internet of Things is the property of EAI - European Alliance for Innovation n.o. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)