Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Application of Multiple Linear Regression Method for Predicting Fish Production Based on Cultivation Type.

Title:
Application of Multiple Linear Regression Method for Predicting Fish Production Based on Cultivation Type.
Source:
International Journal of Engineering Science & Information Technology; 2025, Vol. 5 Issue 1, p297-305, 9p
Database:
Complementary Index

Weitere Informationen

One of the contributors to Indonesia's economy is the fisheries sector, which has a high potential for development. Fisheries are a highly promising subsector for development in Indonesia's growth efforts. Based on data from the Central Bureau of Statistics of Dai ri Regency, three types of aquaculture remain actively utilized in each subdistrict: ponds/freshwater ponds and paddy fields. This research aims to develop a fish production prediction system based on aquaculture types using the Multiple Linear Regression method. The accuracy of the prediction results will be measured using the Mean Absolute Percentage Error (MAPE). The results of this study indicate that in almost every subdistrict, especially pond aquaculture, the MAPE value is <20%, which means it has good accuracy. However, exceptions are found in the Siempat Nempu Hulu subdistrict, which has a MAPE value of 34.29%, and the Silahisabungan subdistrict, which has a MAPE value of 43.78%. Despite these values, they are still categorized as sufficient since they are <50%. The lower the MAPE value, the more accurate the prediction results. The findings of this research show that the multiple linear regression method can be considered correct. For future predictions, some results show negative values. For instance, in Silimapunggapungga subdistrict, a decline in production is predicted for 2024 with -114.779 tons and 2025 with -134.316 tons. The pessimistic prediction results are caused by the decrease in the X2 variable (area size), leading to a minor Y (production) value, potentially becoming negative if the contribution of X2 is no longer sufficient to balance the values of X1 (b1) and a. On the other hand, the Lae Parira subdistrict is predicted to experience an increase in production in 2024 by 87.024 tons and in 2025 by 84.380 tons. This system is implemented using the Python programming language. It is expected to help relevant stakeholders understand production trends and enhance the efficiency of fisheries resource management in the Dairi Regency. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Engineering Science & Information Technology is the property of International Journal of Engineering Science & Information Technology and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)