Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: How the technologies behind self‐driving cars, social networks, ChatGPT, and DALL‐E2 are changing structural biology.

Title:
How the technologies behind self‐driving cars, social networks, ChatGPT, and DALL‐E2 are changing structural biology.
Source:
BioEssays; Jan2025, Vol. 47 Issue 1, p1-19, 19p
Database:
Complementary Index

Weitere Informationen

The performance of deep Neural Networks (NNs) in the text (ChatGPT) and image (DALL‐E2) domains has attracted worldwide attention. Convolutional NNs (CNNs), Large Language Models (LLMs), Denoising Diffusion Probabilistic Models (DDPMs)/Noise Conditional Score Networks (NCSNs), and Graph NNs (GNNs) have impacted computer vision, language editing and translation, automated conversation, image generation, and social network management. Proteins can be viewed as texts written with the alphabet of amino acids, as images, or as graphs of interacting residues. Each of these perspectives suggests the use of tools from a different area of deep learning for protein structural biology. Here, I review how CNNs, LLMs, DDPMs/NCSNs, and GNNs have led to major advances in protein structure prediction, inverse folding, protein design, and small molecule design. This review is primarily intended as a deep learning primer for practicing experimental structural biologists. However, extensive references to the deep learning literature should also make it relevant to readers who have a background in machine learning, physics or statistics, and an interest in protein structural biology. [ABSTRACT FROM AUTHOR]

Copyright of BioEssays is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)