Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Towards a Block-Level Conformer-Based Python Vulnerability Detection.

Title:
Towards a Block-Level Conformer-Based Python Vulnerability Detection.
Source:
Software (2674-113X); Sep2024, Vol. 3 Issue 3, p310-327, 18p
Database:
Complementary Index

Weitere Informationen

Software vulnerabilities pose a significant threat to computer systems because they can jeopardize the integrity of both software and hardware. The existing tools for detecting vulnerabilities are inadequate. Machine learning algorithms may struggle to interpret enormous datasets because of their limited ability to understand intricate linkages within high-dimensional data. Traditional procedures, on the other hand, take a long time and require a lot of manual labor. Furthermore, earlier deep-learning approaches failed to acquire adequate feature data. Self-attention mechanisms can process information across large distances, but they do not collect structural data. This work addresses the critical problem of inadequate vulnerability detection in software systems. We propose a novel method that combines self-attention with convolutional networks to enhance the detection of software vulnerabilities by capturing both localized, position-specific features and global, content-driven interactions. Our contribution lies in the integration of these methodologies to improve the precision and F1 score of vulnerability detection systems, achieving unprecedented results on complex Python datasets. In addition, we improve the self-attention approaches by changing the denominator to address the issue of excessive attention heads creating irrelevant disturbances. We assessed the effectiveness of this strategy using six complex Python vulnerability datasets obtained from GitHub. Our rigorous study and comparison of data with previous studies resulted in the most precise outcomes and F1 score (99%) ever attained by machine learning systems. [ABSTRACT FROM AUTHOR]

Copyright of Software (2674-113X) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)