Treffer: Improving Supply Chain Management Processes Using Smart Contracts in the Ethereum Network Written in Solidity.

Title:
Improving Supply Chain Management Processes Using Smart Contracts in the Ethereum Network Written in Solidity.
Source:
Applied Sciences (2076-3417); Jun2024, Vol. 14 Issue 11, p4738, 24p
Database:
Complementary Index

Weitere Informationen

This paper investigates the potential of integrating supply chain management with blockchain technology, specifically by implementing smart contracts on the Ethereum network using Solidity. The paper explores supply chain management concepts, blockchain, distributed ledger technology, and smart contracts in the context of their integration into supply chains to increase traceability, transparency, and accountability with faster processing times. After investigating these technologies' applications and potential use cases, a framework for smart contract implementation for supply chain management is constructed. Potential data models and functions of a smart contract implementation improving supply chain management processes are discussed. After constructing a framework, the effects of the proposed system on supply chain processes are explained. The proposed framework increases the reliability of the supply chain history due to the usage of DLT (distributed ledger technology). It utilizes smart contracts to increase the manageability and traceability of the supply chain. The proposed framework also eliminates the SPoF (Single Point of Failure) vulnerabilities and external alteration of the transactional data. However, due to the ever-changing and variable nature of the supply chains, the proposed architecture might not be a one-size-fits-all solution, and tailor-made solutions might be necessary for different supply chain management implementations. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)