Treffer: Proactive Agent Behaviour in Dynamic Distributed Constraint Optimisation Problems.
Weitere Informationen
In multi-agent systems, the Dynamic Distributed Constraint Optimisation Problem (D-DCOP) framework is pivotal, allowing for the decomposition of global objectives into agent constraints. Proactive agent behaviour is crucial in such systems, enabling agents to anticipate future changes and adapt accordingly. Existing approaches, like Proactive Dynamic DCOP (PD-DCOP) algorithms, often necessitate a predefined environment model. We address the problem of enabling proactive agent behaviour in D-DCOPs where the dynamics model of the environment is unknown. Specifically, we propose an approach where agents learn local autoregressive models from observations, predicting future states to inform decision-making. To achieve this, we present a temporal experience-sharing message-passing algorithm that leverages dynamic agent connections and a distance metric to collate training data. Our approach outperformed baseline methods in a search-and-extinguish task using the RoboCup Rescue Simulator, achieving better total building damage. The experimental results align with prior work on the significance of decision-switching costs and demonstrate improved performance when the switching cost is combined with a learned model. [ABSTRACT FROM AUTHOR]
Copyright of Information is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)