Treffer: Mobile crowd computing: potential, architecture, requirements, challenges, and applications.

Title:
Mobile crowd computing: potential, architecture, requirements, challenges, and applications.
Source:
Journal of Supercomputing; Jan2024, Vol. 80 Issue 2, p2223-2318, 96p
Database:
Complementary Index

Weitere Informationen

Owing to the enormous advancement in miniature hardware, modern smart mobile devices (SMDs) have become computationally powerful. Mobile crowd computing (MCC) is the computing paradigm that uses public-owned SMDs to garner affordable high-performance computing (HPC). Though several empirical works have established the feasibility of mobile-based computing for various applications, there is a lack of comprehensive coverage of MCC. This paper aims to explore the fundamentals and other nitty–gritty of the idea of MCC in a comprehensive manner. Starting with an explicit definition of MCC, the enabling backdrops and the detailed architectural layouts of different models of MCC are presented, along with categorising different types of MCC based on infrastructure and application demands. MCC is compared extensively with other HPC systems (e.g. desktop grid, cloud, clusters and supercomputers) and similar mobile computing systems (e.g. mobile grid, mobile cloud, ad hoc mobile cloud, and mobile crowdsourcing). MCC being a complex system, various design requirements and considerations are extensively analysed. The potential benefits of MCC are meticulously mentioned, with special discussions on the ubiquity and sustainability of MCC. The issues and challenges of MCC are critically presented in light of further research scopes. Several real-world applications of MCC are identified and propositioned. Finally, to carry forward the accomplishment of the MCC vision, the future prospects are briefly elucidated. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Supercomputing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)