Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Python meets JIT compilers: A simple implementation and a comparative evaluation.

Title:
Python meets JIT compilers: A simple implementation and a comparative evaluation.
Source:
Software: Practice & Experience; Feb2024, Vol. 54 Issue 2, p225-256, 32p
Database:
Complementary Index

Weitere Informationen

Developing a just‐in‐time (JIT) compiler can be a daunting task, especially for a language as flexible as Python. While PyPy, powered with JIT compilation, can often outperform the official pure interpreter, CPython, by a noteworthy margin, its popularity remains far from comparable to that of CPython due to some issues. Given that an easier‐to‐deploy and better‐compatible JIT compiler would benefit more Python users, we have developed comPyler, a simple JIT compiler functioning as a CPython extension and intended to convert frequently interpreted CPython bytecode into equivalent machine code. Designed with good compatibility in mind, it does not alter CPython's internal data structures or external interfaces. Based on LLVM's mature infrastructure, it can be readily ported to almost all platforms. Compared with CPython, it achieved the highest speedup of 2.205, with an average of 1.093. Despite its relatively limited effect, comPyler incurs low development costs. As a baseline compiler, it also sheds light on the improvement attainable by optimizing solely the overhead of bytecode interpretation. Furthermore, as there is still a dearth of empirical research covering the multitude of JIT compilers available for Python, we have conducted a performance study that examines Jython, IronPython, PyPy, GraalPy, Pyston, Pyjion, and our comPyler. Our research takes into account not only the benchmark speed for various time windows but also the boot latency and memory footprint. Through this comprehensive study, our objective is to assist developers in gaining a better understanding of the effects of distinct JIT compilation techniques and to aid users in making informed decisions when choosing among different Python implementations. [ABSTRACT FROM AUTHOR]

Copyright of Software: Practice & Experience is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)