Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Prediction and forecast of surface wind using ML tree-based algorithms.

Title:
Prediction and forecast of surface wind using ML tree-based algorithms.
Source:
Meteorology & Atmospheric Physics; Jan2024, Vol. 136 Issue 1, p1-18, 18p
Geographic Terms:
Database:
Complementary Index

Weitere Informationen

This study focuses on the importance of reliable surface wind forecasts for various sectors, particularly energy production. Traditional numerical weather prediction models are facing limitations and increasing complexity, leading to the development of machine learning models as alternatives or supplements. The research consists of two stages. In the first stage, the ERA5 database is used to evaluate the long-term performance of different combinations of features and two tree-based algorithms for predicting surface wind characteristics (speed and direction) in Cairo. The XGBoost algorithm slightly outperforms the Random Forest algorithm, especially when combined with appropriate feature selection. Even three years after the training period, the results remain very good, with an RMSE of 0.59 m/s, rRMSE of 17%, and R<sup>2</sup> of 0.84. The second stage assesses the multivariate approach's ability to forecast wind speed evolution at different time horizons (1–12 h) during a week characterized by significant wind dynamics. The forecasts demonstrate excellent agreement with observations at a 1-h time horizon, with an RMSE of 0.35 m/s, rRMSE of 7.6%, and R<sup>2</sup> of 0.98, surpassing or comparable to other literature results. However, as the time lag increases, the RMSE (0.86, 1.14, and 1.51 m/s for 3, 6, and 12 h, respectively) and rRMSE (18.7%, 24.8%, and 32.9% for 3, 6, and 12 h, respectively) also increase, while R<sup>2</sup> decreases (0.86, 0.79, and 0.60). Furthermore, the wind variations' amplitude is underestimated. To address this bias, a simple correction method is proposed. [ABSTRACT FROM AUTHOR]

Copyright of Meteorology & Atmospheric Physics is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)