Treffer: A Graph-Based Approach for Modelling Quantum Circuits.

Title:
A Graph-Based Approach for Modelling Quantum Circuits.
Source:
Applied Sciences (2076-3417); Nov2023, Vol. 13 Issue 21, p11794, 22p
Database:
Complementary Index

Weitere Informationen

A crucial task for the systematic application of model-driven engineering techniques in the development of quantum software is the definition of metamodels, as a first step towards automatic code generation and integration with other tools. The importance is even greater when considering recent work where the first extensions to UML for modelling quantum circuits are emerging and the characterisation of these extensions in terms of their suitability for a model-driven approach becomes unavoidable. After reviewing the related work, this article proposes a unified metamodel for modelling quantum circuits, together with five strategies for its use and some examples of its application. The article also provides a set of constraints for using the identified strategies, a set of procedures for transforming the models between the strategies, and an analysis of the suitability of each strategy for performing common tasks in a model-driven quantum software development environment. All of these resources will enable the quantum software community to speak the same language and use the same set of abstractions, which are key to furthering the development of tools to be built as part of future model-driven quantum software development frameworks. [ABSTRACT FROM AUTHOR]

Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)