Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Impact of word embedding models on text analytics in deep learning environment: a review.

Title:
Impact of word embedding models on text analytics in deep learning environment: a review.
Source:
Artificial Intelligence Review; Sep2023, Vol. 56 Issue 9, p10345-10425, 81p
Database:
Complementary Index

Weitere Informationen

The selection of word embedding and deep learning models for better outcomes is vital. Word embeddings are an n-dimensional distributed representation of a text that attempts to capture the meanings of the words. Deep learning models utilize multiple computing layers to learn hierarchical representations of data. The word embedding technique represented by deep learning has received much attention. It is used in various natural language processing (NLP) applications, such as text classification, sentiment analysis, named entity recognition, topic modeling, etc. This paper reviews the representative methods of the most prominent word embedding and deep learning models. It presents an overview of recent research trends in NLP and a detailed understanding of how to use these models to achieve efficient results on text analytics tasks. The review summarizes, contrasts, and compares numerous word embedding and deep learning models and includes a list of prominent datasets, tools, APIs, and popular publications. A reference for selecting a suitable word embedding and deep learning approach is presented based on a comparative analysis of different techniques to perform text analytics tasks. This paper can serve as a quick reference for learning the basics, benefits, and challenges of various word representation approaches and deep learning models, with their application to text analytics and a future outlook on research. It can be concluded from the findings of this study that domain-specific word embedding and the long short term memory model can be employed to improve overall text analytics task performance. [ABSTRACT FROM AUTHOR]

Copyright of Artificial Intelligence Review is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)