Treffer: TRAINING OF NEURAL NETWORKS TO DECIPHER THE ROAD NETWORK ACCORDING TO SPACE IMAGERY RECEIVED BY THE "RESURS-P".
Weitere Informationen
Our team has developed a neural network for road recognition on our digital twin, aimed at enhancing transportation-related applications. The neural network is trained on large datasets of road images and utilizes various deep learning architectures and techniques to improve its accuracy and reliability. The embedded neural network can recognize different road features, such as lane markings, road signs, and obstacles, and can identify the location and direction of the road. The integration of this neural network in our digital twin can help optimize transportation-related operations, reduce accidents, and improve overall traffic flow. The developed neural network architecture and training methodology, as well as its performance evaluation on various datasets, are presented in this paper. Additionally, the paper discusses the future directions for research in this area and the potential of the developed neural network for other applications in the digital twin domain. [ABSTRACT FROM AUTHOR]
Copyright of International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences is the property of Copernicus Gesellschaft mbH and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)