Treffer: Multi-stage Nonlinear Model Predictive Control with Online Scenario Update for Semi-batch Polymerization Processes.

Title:
Multi-stage Nonlinear Model Predictive Control with Online Scenario Update for Semi-batch Polymerization Processes.
Source:
International Journal of Control, Automation & Systems; Oct2022, Vol. 20 Issue 10, p3187-3197, 11p
Database:
Complementary Index

Weitere Informationen

In this paper, the problem of multi-stage nonlinear model predictive control with scenario update is investigated for semi-batch polymerization processes. The objective is to propose novel online scenario update schemes such that the more reasonable scenario tree can be generated. Firstly, based on the Orthogonal Configuration of Finite Elements (OCFE) method of direct radau configuration, the dynamic optimization problems are converted to Nonlinear Programing (NLP) problems such that the speed and accuracy of real-time optimization problem solving are effectively improved. Then, the scenario deviation is calculated based on model prediction information of each scenario and process measurement information. After that, calculate the bayesian probability weight of corresponding scenario is obtained. The online scenario reduction scheme uses the weight information update scenarios gradually reduce the scope of scenario tree representation. The online scenario weight update scheme uses the weight information as the basis for weight assignment of each scenario in the optimization problem. They use different methods to make the scenario tree modeling approach the real realization of uncertainty, and reduce the conservativeness compared with the traditional MSNMPC fixed scenario tree method. Through multiple batches numerical simulations of a semi-batch polymerization process, the advantages and effectiveness of the two proposed schemes are verified. [ABSTRACT FROM AUTHOR]

Copyright of International Journal of Control, Automation & Systems is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)