Treffer: Temporal Parallelization of Inference in Hidden Markov Models.
Weitere Informationen
This paper presents algorithms for the parallelization of inference in hidden Markov models (HMMs). In particular, we propose a parallel forward-backward type of filtering and smoothing algorithm as well as a parallel Viterbi-type maximum-a-posteriori (MAP) algorithm. We define associative elements and operators to pose these inference problems as all-prefix-sums computations and parallelize them using the parallel-scan algorithm. The advantage of the proposed algorithms is that they are computationally efficient in HMM inference problems with long time horizons. We empirically compare the performance of the proposed methods to classical methods on a highly parallel graphics processing unit (GPU). [ABSTRACT FROM AUTHOR]
Copyright of IEEE Transactions on Signal Processing is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)