Treffer: MIP-BOOST: Efficient and Effective L0 Feature Selection for Linear Regression.
Weitere Informationen
Recent advances in mathematical programming have made mixed integer optimization a competitive alternative to popular regularization methods for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. Here, we propose MIP-BOOST, a revision of standard mixed integer programming feature selection that reduces the computational burden of tuning the critical sparsity bound parameter and improves performance in the presence of feature collinearity and of signals that vary in nature and strength. The final outcome is a more efficient and effective L<subscript>0</subscript> feature selection method for applications of realistic size and complexity, grounded on rigorous cross-validation tuning and exact optimization of the associated mixed integer program. Computational viability and improved performance in realistic scenarios is achieved through three independent but synergistic proposals. including additional results, pseudocode, and computer code are available online. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Computational & Graphical Statistics is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)