Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Sea state estimation using monitoring data by convolutional neural network (CNN).

Title:
Sea state estimation using monitoring data by convolutional neural network (CNN).
Source:
Journal of Marine Science & Technology; Sep2021, Vol. 26 Issue 3, p947-962, 16p
Database:
Complementary Index

Weitere Informationen

In recent years, the size of container ships has become larger, thus requiring a more evident assurance of the hull structural safety. In order to evaluate the structural safety in operation, it is necessary to grasp the encountered sea state. The aim of this study is to estimate the encountered sea state using machine learning from measurement data of ocean-going 14,000TEU container ships. In this paper, as a first step in the study, considerable amounts of virtual sea state data and corresponding ship motion and structural response data are prepared. A convolutional neural network (CNN) is developed using these data to estimate the directional wave spectrum of encountered sea based on the hull responses. The input parameters of the formulated CNN include the spectral values of ship motion and structural response spectrum. The output of the CNN includes the sea state parameters of the Ochi-Hubble spectrum, specifically, significant wave height, modal wave frequency, mean wave direction, kurtosis, and concentration of wave energy directional distribution. It is found from the performance examination that the developed CNN is capable of accurately estimating the sea state parameters, although the level of accuracy decreases when the hull response is low. However, the decrease in accuracy when the hull response is low has a weak influence on the evaluation of the structural response to the estimated sea state. [ABSTRACT FROM AUTHOR]

Copyright of Journal of Marine Science & Technology is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)