Treffer: Estimating software robustness in relation to input validation vulnerabilities using Bayesian networks.

Title:
Estimating software robustness in relation to input validation vulnerabilities using Bayesian networks.
Source:
Software Quality Journal; Jun2018, Vol. 26 Issue 2, p455-489, 35p
Database:
Complementary Index

Weitere Informationen

Estimating the robustness of software in the presence of invalid inputs has long been a challenging task owing to the fact that developers usually fail to take the necessary action to validate inputs during the design and implementation of software. We propose a method for estimating the robustness of software in relation to input validation vulnerabilities using Bayesian networks. The proposed method runs on all program functions and/or methods. It calculates a robustness value using information on the existence of input validation code in the functions and utilizing common weakness scores of known input validation vulnerabilities. In the case study, ten well-known software libraries implemented in the JavaScript language, which are chosen because of their increasing popularity among software developers, are evaluated. Using our method, software development teams can track changes made to software to deal with invalid inputs. [ABSTRACT FROM AUTHOR]

Copyright of Software Quality Journal is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)