Treffer: Rule-based inference and decomposition for distributed in-network processing in wireless sensor networks.
Weitere Informationen
Wireless sensor networks are application specific and necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. A common type of application for wireless sensor networks is the event-driven reactive application, which requires reactive actions to be taken in response to events. In such applications, the interest is in the higher-level information described by complex event patterns, not in the raw sensory data of individual nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a continuous flow of raw sensor readings over the network. As communication operations are the most expensive in terms of energy usage, the distributed processing of information is indispensable for viable deployments of applications in wireless sensor networks. This method not only helps in reducing the total amount of packets transmitted in the network and the total energy consumed by the sensor nodes, but also produces scalable and fault-tolerant networks. For this purpose, we present two schemes that distribute information processing to appropriate nodes in the network. These schemes use reactive rules, which express relations between event patterns and actions, in order to capture reactive behavior. We also share the results of the performance of our algorithms and the simulations based on our approach that show the success of our methods in decreasing network traffic while still realizing the desired functionality. [ABSTRACT FROM AUTHOR]
Copyright of Knowledge & Information Systems is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)