Treffer: SKIP+: A Self-Stabilizing Skip Graph.
Weitere Informationen
Peer-to-peer systems rely on a scalable overlay network that enables efficient routing between its members. Hypercubic topologies facilitate such operations while each node only needs to connect to a small number of other nodes. In contrast to static communication networks, peer-to-peer networks allow nodes to adapt their neighbor set over time in order to react to join and leave events and failures. This article shows how to maintain such networks in a robust manner. Concretely, we present a distributed and self-stabilizing algorithm that constructs a (slightly extended) skip graph, SKIP<sup>+</sup>, in polylogarithmic time from any given initial state in which the overlay network is still weakly connected. This is an exponential improvement compared to previously known self-stabilizing algorithms for overlay networks. In addition, our algorithm handles individual joins and leaves locally and efficiently. [ABSTRACT FROM AUTHOR]
Copyright of Journal of the ACM is the property of Association for Computing Machinery and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)