Treffer: Generic Node Removal for Factor-Graph SLAM.
Weitere Informationen
This paper reports on a generic factor-based method for node removal in factor-graph simultaneous localization and mapping (SLAM), which we call generic linear constraints (GLCs). The need for a generic node removal tool is motivated by long-term SLAM applications, whereby nodes are removed in order to control the computational cost of graph optimization. GLC is able to produce a new set of linearized factors over the elimination clique that can represent either the true marginalization (i.e., dense GLC) or a sparse approximation of the true marginalization using a Chow-Liu tree (i.e., sparse GLC). The proposed algorithm improves upon commonly used methods in two key ways: First, it is not limited to graphs with strictly full-state relative-pose factors and works equally well with other low-rank factors, such as those produced by monocular vision. Second, the new factors are produced in such a way that accounts for measurement correlation, which is a problem encountered in other methods that rely strictly upon pairwise measurement composition. We evaluate the proposed method over multiple real-world SLAM graphs and show that it outperforms other recently proposed methods in terms of Kullback–Leibler divergence. Additionally, we experimentally demonstrate that the proposed GLC method provides a principled and flexible tool to control the computational complexity of long-term graph SLAM, with results shown for 34.9\, h of real-world indoor–outdoor data covering 147.4\ km collected over $27$ mapping sessions spanning a period of $15$ months. [ABSTRACT FROM PUBLISHER]
Copyright of IEEE Transactions on Robotics is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)