Treffer: Towards Network-Based Neurofeedback of Visual Areas to Enhance Visual Perception.

Title:
Towards Network-Based Neurofeedback of Visual Areas to Enhance Visual Perception.
Authors:
Zlatkova D; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva, 1211, Switzerland.; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Bern, 3010, Switzerland., Gerber SM; Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, 3012, Switzerland., Savic B; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Bern, 3010, Switzerland., Nef T; Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, 3012, Switzerland.; Department of Neurology, Inselspital, Bern, 3010, Switzerland., Guggisberg AG; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva, 1211, Switzerland. aguggis@gmail.com.; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Bern, 3010, Switzerland. aguggis@gmail.com., Ušćumlić M; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospital of Geneva, Av. de Beau-Séjour 26, Geneva, 1211, Switzerland.; Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Bern, 3010, Switzerland.
Source:
Brain topography [Brain Topogr] 2026 Jan 22; Vol. 39 (2), pp. 18. Date of Electronic Publication: 2026 Jan 22.
Publication Type:
Journal Article; Randomized Controlled Trial
Language:
English
Journal Info:
Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 8903034 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-6792 (Electronic) Linking ISSN: 08960267 NLM ISO Abbreviation: Brain Topogr Subsets: MEDLINE
Imprint Name(s):
Publication: 1999- : New York : Kluwer Academic/Plenum Publishers
Original Publication: [New York, NY : Human Sciences Press, c1988-
References:
Alkoby O, Abu-Rmileh A, Shriki O, Todder D (2018) Can we predict who will respond to neurofeedback? A review of the inefficacy problem and existing predictors for successful EEG neurofeedback learning. Neuroscience 378:155–164. https://doi.org/10.1016/j.neuroscience.2016.12.050. (PMID: 10.1016/j.neuroscience.2016.12.05028069531)
Allaman L, Mottaz A, Kleinschmidt A, Guggisberg AG (2020) Spontaneous network coupling enables efficient task performance without local task-Induced activations. J Neurosci 40(50):9663–9675. https://doi.org/10.1523/JNEUROSCI.1166-20.2020. (PMID: 10.1523/JNEUROSCI.1166-20.2020331589667726528)
Allaman L, Mottaz A, Guggisberg AG (2021) Disrupted resting-state EEG alpha-band interactions as a novel marker for the severity of visual field deficits after brain lesion. Clin Neurophysiol 132(9):2101–2109. https://doi.org/10.1016/j.clinph.2021.05.029. (PMID: 10.1016/j.clinph.2021.05.02934284245)
Amunts K, Mohlberg H, Bludau S, Zilles K (2020) Julich-Brain: A 3D probabilistic atlas of the human brain’s cytoarchitecture. Science 369(6506):988–992. https://doi.org/10.1126/science.abb4588. (PMID: 10.1126/science.abb458832732281)
Beffara B, Hadj-Bouziane F, Hamed SB, Boehler CN, Chelazzi L, Santandrea E, Macaluso E (2022) Dynamic causal interactions between occipital and parietal cortex explain how endogenous Spatial attention and stimulus-driven salience jointly shape the distribution of processing priorities in 2D visual space. NeuroImage 255:119206. https://doi.org/10.1016/j.neuroimage.2022.119206. (PMID: 10.1016/j.neuroimage.2022.11920635427770)
Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-Down control of human visual cortex by frontal and parietal cortex in anticipatory visual Spatial attention. J Neurosci 28(40):10056–10061. https://doi.org/10.1523/JNEUROSCI.1776-08.2008. (PMID: 10.1523/JNEUROSCI.1776-08.2008188299632583122)
Busch NA, Dubois J, VanRullen R (2009) The phase of ongoing EEG oscillations predicts visual perception. J Neurosci 29(24):7869–7876. https://doi.org/10.1523/JNEUROSCI.0113-09.2009. (PMID: 10.1523/JNEUROSCI.0113-09.2009195355986665641)
Chapeton JI, Haque R, Wittig JH, Inati SK, Zaghloul KA (2019) Large-Scale communication in the human brain is rhythmically modulated through alpha coherence. Curr Biology: CB 29(17):2801–2811e5. https://doi.org/10.1016/j.cub.2019.07.014. (PMID: 10.1016/j.cub.2019.07.014)
Choi H-J, Zilles K, Mohlberg H, Schleicher A, Fink GR, Armstrong E, Amunts K (2006) Cytoarchitectonic identification and probabilistic mapping of two distinct areas within the anterior ventral bank of the human intraparietal sulcus. J Comp Neurol 495(1):53–69. https://doi.org/10.1002/cne.20849. (PMID: 10.1002/cne.20849164329043429851)
Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3(3):201–215. https://doi.org/10.1038/nrn755. (PMID: 10.1038/nrn75511994752)
Dalal SS, Zumer JM, Guggisberg AG, Trumpis M, Wong DDE, Sekihara K, Nagarajan SS (2011) MEG/EEG source Reconstruction, statistical Evaluation, and visualization with NUTMEG. Comput Intell Neurosci 2011(1):758973. https://doi.org/10.1155/2011/758973. (PMID: 10.1155/2011/758973214371743061455)
de Haan GA, Heutink J, Melis-Dankers BJM, Brouwer WH, Tucha O (2015) Difficulties in daily life reported by patients with homonymous visual field defects. J Neuro-Ophthalmology: Official J North Am Neuro-Ophthalmology Soc 35(3):259–264. https://doi.org/10.1097/WNO.0000000000000244. (PMID: 10.1097/WNO.0000000000000244)
Dubovik S, Pignat J-M, Ptak R, Aboulafia T, Allet L, Gillabert N, Magnin C, Albert F, Momjian-Mayor I, Nahum L, Lascano AM, Michel CM, Schnider A, Guggisberg AG (2012) The behavioral significance of coherent resting-state oscillations after stroke. NeuroImage 61(1):249–257. https://doi.org/10.1016/j.neuroimage.2012.03.024. (PMID: 10.1016/j.neuroimage.2012.03.02422440653)
Dubovik S, Ptak R, Aboulafia T, Magnin C, Gillabert N, Allet L, Pignat J-M, Schnider A, Guggisberg AG (2013) EEG alpha band synchrony predicts cognitive and motor performance in patients with ischemic stroke. Behav Neurol 26(3):187. https://doi.org/10.3233/BEN-2012-129007. (PMID: 10.3233/BEN-2012-129007227134215214220)
Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25(4):1325–1335. https://doi.org/10.1016/j.neuroimage.2004.12.034. (PMID: 10.1016/j.neuroimage.2004.12.03415850749)
Garrison KA, Scheinost D, Worhunsky PD, Elwafi HM, Thornhill TA, Thompson E, Saron C, Desbordes G, Kober H, Hampson M, Gray JR, Constable RT, Papademetris X, Brewer JA (2013) Real-time fMRI links subjective experience with brain activity during focused attention. NeuroImage 81:110–118. https://doi.org/10.1016/j.neuroimage.2013.05.030. (PMID: 10.1016/j.neuroimage.2013.05.03023684866)
Gegenfurtner KR, Kiper DC, Levitt JB (1997) Functional properties of neurons in macaque area V3. J Neurophysiol 77(4):1906–1923. https://doi.org/10.1152/jn.1997.77.4.1906. (PMID: 10.1152/jn.1997.77.4.19069114244)
Guggisberg AG, Honma SM, Findlay AM, Dalal SS, Kirsch HE, Berger MS, Nagarajan SS (2008) Mapping functional connectivity in patients with brain lesions. Ann Neurol 63(2):193–203. https://doi.org/10.1002/ana.21224. (PMID: 10.1002/ana.21224178943813646715)
Guggisberg AG, Dalal SS, Zumer JM, Wong DD, Dubovik S, Michel CM, Schnider A (2011) Localization of cortico-peripheral coherence with electroencephalography. NeuroImage 57(4):1348–1357. https://doi.org/10.1016/j.neuroimage.2011.05.076. (PMID: 10.1016/j.neuroimage.2011.05.07621672634)
Hazelton C, Campbell P, Rowe FJ, Jonuscheit S, Kernohan A, Angilley J, Henderson CA, Langhorne P, Pollock A (2019) Interventions for visual field defects in people with stroke. Stroke 50(12):e419–e420. https://doi.org/10.1161/STROKEAHA.119.026516. (PMID: 10.1161/STROKEAHA.119.026516)
Hepworth LR, Rowe FJ, Walker MF, Rockliffe J, Noonan C, Howard C, Currie J (2016) Post-stroke visual impairment: A systematic literature review of types and recovery of visual conditions. Ophthalmol Research: Int J 1–43. https://doi.org/10.9734/OR/2016/21767.
Iemi L, Chaumon M, Crouzet SM, Busch NA (2017) Spontaneous neural oscillations bias perception by modulating baseline excitability. J Neuroscience: Official J Soc Neurosci 37(4):807–819. https://doi.org/10.1523/JNEUROSCI.1432-16.2016. (PMID: 10.1523/JNEUROSCI.1432-16.2016)
Iglewicz B, Hoaglin DC (1993) How to detect and handle outliers. ASQC Quality.
Kober SE, Wood G, Schuster S, Körner C (2024) Do miniature eye movements affect neurofeedback training performance? A combined EEG-Eye tracking study. Appl Psychophysiol Biofeedback 49(2):313–327. https://doi.org/10.1007/s10484-024-09625-6. (PMID: 10.1007/s10484-024-09625-63849212411101551)
Kothe C (2014) Lab Streaming Layer (LSL)—A software framework for synchronizing a large array of data collection and stimulation devices. https://github.com/sccn/labstreaminglayer.
Kujovic M, Zilles K, Malikovic A, Schleicher A, Mohlberg H, Rottschy C, Eickhoff SB, Amunts K (2013) Cytoarchitectonic mapping of the human dorsal extrastriate cortex. Brain Struct Function 218(1):157–172. https://doi.org/10.1007/s00429-012-0390-9. (PMID: 10.1007/s00429-012-0390-9)
Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26(51):13128–13142. https://doi.org/10.1523/JNEUROSCI.1657-06.2006. (PMID: 10.1523/JNEUROSCI.1657-06.2006171827641904390)
Luck SJ (2014) An introduction to the Event-related potential technique. MIT Press.
Manuel AL, Guggisberg AG, Thézé R, Turri F, Schnider A (2018) Resting-state connectivity predicts visuo-motor skill learning. NeuroImage 176:446–453. https://doi.org/10.1016/j.neuroimage.2018.05.003. (PMID: 10.1016/j.neuroimage.2018.05.00329730496)
Mathewson KE, Gratton G, Fabiani M, Beck DM, Ro T (2009) To see or not to see: prestimulus α phase predicts visual awareness. J Neurosci 29(9):2725–2732. https://doi.org/10.1523/JNEUROSCI.3963-08.2009. (PMID: 10.1523/JNEUROSCI.3963-08.2009192618662724892)
Mottaz A, Solcà M, Magnin C, Corbet T, Schnider A, Guggisberg AG (2015) Neurofeedback training of alpha-band coherence enhances motor performance. Clin Neurophysiology: Official J Int Federation Clin Neurophysiol 126(9):1754–1760. https://doi.org/10.1016/j.clinph.2014.11.023. (PMID: 10.1016/j.clinph.2014.11.023)
Mottaz A, Corbet T, Doganci N, Magnin C, Nicolo P, Schnider A, Guggisberg AG (2018) Modulating functional connectivity after stroke with neurofeedback: effect on motor deficits in a controlled cross-over study. NeuroImage: Clin 20:336–346. https://doi.org/10.1016/j.nicl.2018.07.029. (PMID: 10.1016/j.nicl.2018.07.02930112275)
Mottaz A, Savic B, Allaman L, Guggisberg AG (2024) Neural correlates of motor learning: network communication versus local oscillations. Netw Neurosci 8(3):714–733. https://doi.org/10.1162/netn_a_00374. (PMID: 10.1162/netn_a_003743935544711340994)
Newman MEJ (2004) Analysis of weighted networks. Phys Rev E 70(5):056131. https://doi.org/10.1103/PhysRevE.70.056131. (PMID: 10.1103/PhysRevE.70.056131)
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029. (PMID: 10.1016/j.clinph.2004.04.02915351371)
Palva S, Palva JM (2007) New vistas for α-frequency band oscillations. Trends Neurosci 30(4):150–158. https://doi.org/10.1016/j.tins.2007.02.001. (PMID: 10.1016/j.tins.2007.02.00117307258)
Ros T, Théberge J, Frewen PA, Kluetsch R, Densmore M, Calhoun VD, Lanius RA (2013) Mind over chatter: plastic up-regulation of the fMRI salience network directly after EEG neurofeedback. NeuroImage 65:324–335. https://doi.org/10.1016/j.neuroimage.2012.09.046. (PMID: 10.1016/j.neuroimage.2012.09.04623022326)
Rowe FJ, Wright D, Brand D, Jackson C, Harrison S, Maan T, Scott C, Vogwell L, Peel S, Akerman N, Dodridge C, Howard C, Shipman T, Sperring U, MacDiarmid S, Freeman C (2013) A Prospective Profile of Visual Field Loss following Stroke: Prevalence, Type, Rehabilitation, and Outcome. BioMed Research International, 2013, 719096. https://doi.org/10.1155/2013/719096.
Rowe FJ, Hepworth LR, Howard C, Hanna KL, Cheyne CP, Currie J (2019) High incidence and prevalence of visual problems after acute stroke: an epidemiology study with implications for service delivery. PLoS ONE 14(3):e0213035. https://doi.org/10.1371/journal.pone.0213035. (PMID: 10.1371/journal.pone.0213035308406626402759)
Samaha J, Postle BR (2015) The speed of Alpha-Band oscillations predicts the Temporal resolution of visual perception. Curr Biology: CB 25(22):2985–2990. https://doi.org/10.1016/j.cub.2015.10.007. (PMID: 10.1016/j.cub.2015.10.007)
Scharnowski F, Hutton C, Josephs O, Weiskopf N, Rees G (2012) Improving visual perception through neurofeedback. J Neurosci 32(49):17830–17841. https://doi.org/10.1523/JNEUROSCI.6334-11.2012. (PMID: 10.1523/JNEUROSCI.6334-11.2012232233023520425)
Scharnowski F, Rosa MJ, Golestani N, Hutton C, Josephs O, Weiskopf N, Rees G (2014) Connectivity changes underlying neurofeedback training of visual cortex activity. PLoS ONE 9(3):e91090. https://doi.org/10.1371/journal.pone.0091090. (PMID: 10.1371/journal.pone.0091090246090653946642)
Sekihara K, Nagarajan SS, Poeppel D, Marantz A (2004) Asymptotic SNR of scalar and vector Minimum-Variance beamformers for neuromagnetic source reconstruction. IEEE Trans Bio Med Eng 51(10):1726. https://doi.org/10.1109/TBME.2004.827926. (PMID: 10.1109/TBME.2004.827926)
Singh KD, Barnes GR, Hillebrand A (2003) Group imaging of task-related changes in cortical synchronisation using nonparametric permutation testing. NeuroImage 19(4):1589–1601. https://doi.org/10.1016/s1053-8119(03)00249-0. (PMID: 10.1016/s1053-8119(03)00249-012948714)
Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N, Blefari ML, Rana M, Oblak E, Birbaumer N, Sulzer J (2017) Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18(2):86–100. https://doi.org/10.1038/nrn.2016.164. (PMID: 10.1038/nrn.2016.16428003656)
Stam CJ, van Straaten ECW (2012) The organization of physiological brain networks. Clin Neurophysiology: Official J Int Federation Clin Neurophysiol 123(6):1067–1087. https://doi.org/10.1016/j.clinph.2012.01.011. (PMID: 10.1016/j.clinph.2012.01.011)
Stenroos M, Mäntynen V, Nenonen J (2007) A matlab library for solving quasi-static volume conduction problems using the boundary element method. Comput Methods Programs Biomed 88(3):256–263. https://doi.org/10.1016/j.cmpb.2007.09.004. (PMID: 10.1016/j.cmpb.2007.09.00418022274)
Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neuroscience: Official J Soc Neurosci 26(37):9494–9502. https://doi.org/10.1523/JNEUROSCI.0875-06.2006. (PMID: 10.1523/JNEUROSCI.0875-06.2006)
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage 15(1):273–289. https://doi.org/10.1006/nimg.2001.0978. (PMID: 10.1006/nimg.2001.097811771995)
van Dijk H, Schoffelen J-M, Oostenveld R, Jensen O (2008) Prestimulus oscillatory activity in the alpha band predicts visual discrimination ability. J Neurosci 28(8):1816–1823. https://doi.org/10.1523/JNEUROSCI.1853-07.2008. (PMID: 10.1523/JNEUROSCI.1853-07.2008182874986671447)
Zimmermann P, Fimm B (2021) Testbatterie zur Aufmerksamkeitsprüfung – Version Mobilität (TAP-M). Version 1.3.2. PSYTEST. https://www.psytest.net/en/test-batteries/tap-m/purpose.
Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics. PLOS ONE, 8(7), e68910. https://doi.org/10.1371/journal.pone.0068910.
Grant Information:
208177 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Switzerland
Contributed Indexing:
Keywords: Alpha-band; EEG; Functional connectivity; Neurofeedback; Visual perception
Entry Date(s):
Date Created: 20260122 Date Completed: 20260122 Latest Revision: 20260122
Update Code:
20260122
DOI:
10.1007/s10548-025-01172-5
PMID:
41569433
Database:
MEDLINE

Weitere Informationen

α-band-mediated brain network communication underlies visual processing and is disrupted in visual deficits. We aimed to develop and evaluate an EEG-based neurofeedback targeting α-band connectivity of source-reconstructed visual areas with the rest of the brain, to determine whether modulating this network enhances detection of low-contrast visual stimuli. In this randomized, active-controlled study, 28 participants received real-time auditory neurofeedback designed to increase global α-band connectivity between target regions and the rest of the brain. Feedback targeted interactions with the visual cortex (V1-V3) in the active group and with the frontal cortex in the control group. Each participant completed two neurofeedback sessions on separate days. Resting-state connectivity, visual, and attentional performance were assessed on the days preceding and following training. 50% of participants in the active group successfully increased α-band connectivity of the targeted visual cortex, whereas connectivity decreased in the control and non-responder groups. Improvements in stimulus detection were observed primarily in male participants and appeared to be influenced by additional factors, including baseline performance levels. Even brief network-based neurofeedback interventions can enhance α-band connectivity of visual areas.
(© 2026. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Declarations. Competing Interests: The authors declare no competing interests.