Treffer: Dissociable Effects of Attention and Prediction on Visual Processing: Evidence From Overlap-Corrected Visual ERPs.
Original Publication: Baltimore, Williams & Wilkins.
Ales, J. M., J. L. Yates, and A. Norcia. 2013. “On Determining the Intracranial Sources of Visual Evoked Potentials From Scalp Topography: A Reply to Kelly et al. (This Issue).” NeuroImage 64: 703–711. https://doi.org/10.1016/j.neuroimage.2012.09.009.
Ales, J. M., J. L. Yates, and A. M. Norcia. 2010. “V1 Is Not Uniquely Identified by Polarity Reversals of Responses to Upper and Lower Visual Field Stimuli.” NeuroImage 52, no. 4: 1401–1409. https://doi.org/10.1016/j.neuroimage.2010.05.016.
Alilović, J., B. Timmermans, L. C. Reteig, S. Van Gaal, and H. A. Slagter. 2019. “No Evidence That Predictions and Attention Modulate the First Feedforward Sweep of Cortical Information Processing.” Cerebral Cortex 29, no. 5: 2261–2278. https://doi.org/10.1093/cercor/bhz038.
Alink, A., C. M. Schwiedrzik, A. Kohler, W. Singer, and L. Muckli. 2010. “Stimulus Predictability Reduces Responses in Primary Visual Cortex.” Journal of Neuroscience 30, no. 8: 2960–2966. https://doi.org/10.1523/JNEUROSCI.3730‐10.2010.
Bacigalupo, F., and S. J. Luck. 2019. “Lateralized Suppression of Alpha‐Band EEG Activity as a Mechanism of Target Processing.” Journal of Neuroscience 39, no. 5: 900–917. https://doi.org/10.1523/JNEUROSCI.0183‐18.2018.
Barr, D. J., R. Levy, C. Scheepers, and H. J. Tily. 2013. “Random Effects Structure for Confirmatory Hypothesis Testing: Keep It Maximal.” Journal of Memory and Language 68, no. 3: 255–278. https://doi.org/10.1016/j.jml.2012.11.001.
Bartels, A., S. Zeki, and N. K. Logothetis. 2008. “Natural Vision Reveals Regional Specialization to Local Motion and to Contrast‐Invariant, Global Flow in the Human Brain.” Cerebral Cortex 18, no. 3: 705–717. https://doi.org/10.1093/cercor/bhm107.
Bates, D., M. Mächler, B. Bolker, and S. Walker. 2015. “Fitting Linear Mixed‐Effects Models Using lme4.” Journal of Statistical Software 67, no. 1: 1–48. https://doi.org/10.18637/jss.v067.i01.
Baumgartner, H. M., C. J. Graulty, S. A. Hillyard, and M. A. Pitts. 2018. “Does Spatial Attention Modulate the Earliest Component of the Visual Evoked Potential?” Cognitive Neuroscience 9, no. 1–2: 4–19. https://doi.org/10.1080/17588928.2017.1333490.
Behzadnia, A., M. Ghoshuni, and S. A. Chermahini. 2017. “EEG Activities and the Sustained Attention Performance.” Neurophysiology 49, no. 3: 226–233. https://doi.org/10.1007/s11062‐017‐9675‐1.
Bezanson, J., A. Edelman, S. Karpinski, and V. B. Shah. 2017. “Julia: A Fresh Approach to Numerical Computing.” SIAM Review 59, no. 1: 65–98. https://doi.org/10.1137/141000671.
Blom, T., S. Bode, and H. Hogendoorn. 2021. “The Time‐Course of Prediction Formation and Revision in Human Visual Motion Processing.” Cortex 138: 191–202. https://doi.org/10.1016/j.cortex.2021.02.008.
Center, E. G., K. D. Federmeier, and D. M. Beck. 2024. “The Brain's Sensitivity to Real‐World Statistical Regularity Does Not Require Full Attention.” Journal of Cognitive Neuroscience 36, no. 8: 1715–1740. https://doi.org/10.1162/jocn_a_02181.
Clark, A. 2013. “Whatever Next? Predictive Brains, Situated Agents, and the Future of Cognitive Science.” Behavioral and Brain Sciences 36, no. 3: 181–204. https://doi.org/10.1017/S0140525X12000477.
Clark, V. P., S. Fan, and S. A. Hillyard. 1994. “Identification of Early Visual Evoked Potential Generators by Retinotopic and Topographic Analyses.” Human Brain Mapping 2, no. 3: 170–187. https://doi.org/10.1002/hbm.460020306.
Clark, V. P., and S. A. Hillyard. 1996. “Spatial Selective Attention Affects Early Extrastriate but Not Striate Components of the Visual Evoked Potential.” Journal of Cognitive Neuroscience 8, no. 5: 387–402. https://doi.org/10.1162/jocn.1996.8.5.387.
Dassanayake, T. L., P. T. Michie, and R. Fulham. 2016. “Effect of Temporal Predictability on Exogenous Attentional Modulation of Feedforward Processing in the Striate Cortex.” International Journal of Psychophysiology 105: 9–16. https://doi.org/10.1016/j.ijpsycho.2016.04.007.
De Lange, F. P., M. Heilbron, and P. Kok. 2018. “How Do Expectations Shape Perception?” Trends in Cognitive Sciences 22, no. 9: 764–779. https://doi.org/10.1016/j.tics.2018.06.002.
Debes, S. R., and V. Dragoi. 2023. “Suppressing Feedback Signals to Visual Cortex Abolishes Attentional Modulation.” Science 379, no. 6631: 468–473. https://doi.org/10.1126/science.ade1855.
Di Russo, F., M. Berchicci, V. Bianco, et al. 2021. “Sustained Visuospatial Attention Enhances Lateralized Anticipatory ERP Activity in Sensory Areas.” Brain Structure and Function 226, no. 2: 457–470. https://doi.org/10.1007/s00429‐020‐02192‐6.
Di Russo, F., A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard. 2002. “Cortical Sources of the Early Components of the Visual Evoked Potential.” Human Brain Mapping 15, no. 2: 95–111. https://doi.org/10.1002/hbm.10010.
Doesburg, S. M., N. Bedo, and L. M. Ward. 2016. “Top‐Down Alpha Oscillatory Network Interactions During Visuospatial Attention Orienting.” NeuroImage 132: 512–519. https://doi.org/10.1016/j.neuroimage.2016.02.076.
Doricchi, F., S. Lasaponara, M. Pazzaglia, and M. Silvetti. 2022. “Left and Right Temporal‐Parietal Junctions (TPJs) as “Match/Mismatch” Hedonic Machines: A Unifying Account of TPJ Function.” Physics of Life Reviews 42: 56–92. https://doi.org/10.1016/j.plrev.2022.07.001.
Dou, W., A. Morrow, L. Iemi, and J. Samaha. 2022. “Pre‐Stimulus Alpha‐Band Phase Gates Early Visual Cortex Responses.” NeuroImage 253: 119060. https://doi.org/10.1016/j.neuroimage.2022.119060.
Edwards, G., P. Vetter, F. McGruer, L. S. Petro, and L. Muckli. 2017. “Predictive Feedback to V1 Dynamically Updates With Sensory Input.” Scientific Reports 7, no. 1: 16538. https://doi.org/10.1038/s41598‐017‐16093‐y.
Egner, T., J. M. Monti, and C. Summerfield. 2010. “Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream.” Journal of Neuroscience 30, no. 49: 16601–16608. https://doi.org/10.1523/JNEUROSCI.2770‐10.2010.
Ehinger, B., and P. Alday. 2025. “Unfold.Jl: Event‐Related Regression Toolbox (Version v0.8.1) [Computer Software].” Zenodo. https://doi.org/10.5281/ZENODO.14652576.
Ehinger, B., and O. Dimigen. 2019. “Unfold: An Integrated Toolbox for Overlap Correction, Non‐Linear Modeling, and Regression‐Based EEG Analysis.” PeerJ 7: e7838. https://doi.org/10.7717/peerj.7838.
Ekroll, V., F. Faul, and J. Golz. 2008. “Classification of Apparent Motion Percepts Based on Temporal Factors.” Journal of Vision 8, no. 4: 31. https://doi.org/10.1167/8.4.31.
Ellemberg, D., B. Hammarrenger, F. Lepore, M.‐S. Roy, and J.‐P. Guillemot. 2001. “Contrast Dependency of VEPs as a Function of Spatial Frequency: The Parvocellular and Magnocellular Contributions to Human VEPs.” Spatial Vision 15, no. 1: 99–111. https://doi.org/10.1163/15685680152692042.
Faul, F., E. Erdfelder, A.‐G. Lang, and A. Buchner. 2007. “G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences.” Behavior Research Methods 39, no. 2: 175–191. https://doi.org/10.3758/BF03193146.
Foxe, J., and G. Simpson. 2002. “Flow of Activation From V1 to Frontal Cortex in Humans.” Experimental Brain Research 142, no. 1: 139–150. https://doi.org/10.1007/s00221‐001‐0906‐7.
Foxe, J., E. C. Strugstad, P. Sehatpour, et al. 2008. “Parvocellular and Magnocellular Contributions to the Initial Generators of the Visual Evoked Potential: High‐Density Electrical Mapping of the “C1” Component.” Brain Topography 21, no. 1: 11–21. https://doi.org/10.1007/s10548‐008‐0063‐4.
Friedman, D., Y. M. Cycowicz, and H. Gaeta. 2001. “The Novelty P3: An Event‐Related Brain Potential (ERP) Sign of the Brain's Evaluation of Novelty.” Neuroscience & Biobehavioral Reviews 25, no. 4: 355–373. https://doi.org/10.1016/S0149‐7634(01)00019‐7.
Friston, K. 2009. “The Free‐Energy Principle: A Rough Guide to the Brain?” Trends in Cognitive Sciences 13, no. 7: 293–301. https://doi.org/10.1016/j.tics.2009.04.005.
Fu, S., J. Fedota, P. M. Greenwood, and R. Parasuraman. 2010. “Early Interaction Between Perceptual Load and Involuntary Attention: An Event‐Related Potential Study.” Neuroscience Letters 468, no. 1: 68–71. https://doi.org/10.1016/j.neulet.2009.10.065.
Fu, S., Y. Huang, Y. Luo, et al. 2009. “Perceptual Load Interacts With Involuntary Attention at Early Processing Stages: Event‐Related Potential Studies.” NeuroImage 48, no. 1: 191–199. https://doi.org/10.1016/j.neuroimage.2009.06.028.
Gebodh, N., M. I. Vanegas, and S. P. Kelly. 2017. “Effects of Stimulus Size and Contrast on the Initial Primary Visual Cortical Response in Humans.” Brain Topography 30, no. 4: 450–460. https://doi.org/10.1007/s10548‐016‐0530‐2.
Gilbert, C. D., and W. Li. 2013. “Top‐Down Influences on Visual Processing.” Nature Reviews Neuroscience 14, no. 5: 350–363. https://doi.org/10.1038/nrn3476.
Gonsalvez, C. J., and J. Polich. 2002. “P300 Amplitude Is Determined by Target‐to‐Target Interval.” Psychophysiology 39, no. 3: 388–396. https://doi.org/10.1017/S0048577201393137.
Gramfort, A. 2013. “MEG and EEG Data Analysis With MNE‐Python.” Frontiers in Neuroscience 7: 267. https://doi.org/10.3389/fnins.2013.00267.
Hautus, M. J. 1995. “Corrections for Extreme Proportions and Their Biasing Effects on Estimated Values Ofd.” Behavior Research Methods, Instruments, & Computers 27, no. 1: 46–51. https://doi.org/10.3758/BF03203619.
Hautus, M. J., N. A. Macmillan, and C. D. Creelman. 2021. Detection Theory: A User's Guide. 3rd ed. Routledge. https://doi.org/10.4324/9781003203636.
Herde, L., V. Rossi, G. Pourtois, and K. Rauss. 2018. “Early Retinotopic Responses to Violations of Emotion–Location Associations May Depend on Conscious Awareness.” Cognitive Neuroscience 9, no. 1–2: 38–55. https://doi.org/10.1080/17588928.2017.1338250.
Herde, L., M. Schönauer‐Firle, and K. Rauss. 2022. “Retinotopically Specific Effects of Attention on Human Early Visual Cortex Activity.” Journal of Experimental Psychology: Human Perception and Performance 48, no. 8: 856–870. https://doi.org/10.1037/xhp0001022.
Hillyard, S. A., E. K. Vogel, and S. J. Luck. 1998. “Sensory Gain Control (Amplification) as a Mechanism of Selective Attention: Electrophysiological and Neuroimaging Evidence.” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 353, no. 1373: 1257–1270. https://doi.org/10.1098/rstb.1998.0281.
Hogendoorn, H., and A. N. Burkitt. 2018. “Predictive Coding of Visual Object Position Ahead of Moving Objects Revealed by Time‐Resolved EEG Decoding.” NeuroImage 171: 55–61. https://doi.org/10.1016/j.neuroimage.2017.12.063.
Hopfinger, J. B., and V. M. West. 2006. “Interactions Between Endogenous and Exogenous Attention on Cortical Visual Processing.” NeuroImage 31, no. 2: 774–789. https://doi.org/10.1016/j.neuroimage.2005.12.049.
Iemi, L., N. A. Busch, A. Laudini, et al. 2019. “Multiple Mechanisms Link Prestimulus Neural Oscillations to Sensory Responses.” eLife 8: e43620. https://doi.org/10.7554/eLife.43620.
Jeffreys, D. A., and J. G. Axford. 1972. “Source Locations of Pattern‐Specific Components of Human Visual Evoked Potentials. I. Component of Striate Cortical Origin.” Experimental Brain Research 16, no. 1: 1–21. https://doi.org/10.1007/BF00233371.
Jeon, Y.‐W., and J. Polich. 2001. “P3a From a Passive Visual Stimulus Task.” Clinical Neurophysiology 112, no. 12: 2202–2208. https://doi.org/10.1016/S1388‐2457(01)00663‐0.
Kamp, S. 2020. “Preceding Stimulus Sequence Effects on the Oddball‐P300 in Young and Healthy Older Adults.” Psychophysiology 57, no. 7: e13593. https://doi.org/10.1111/psyp.13593.
Kapadia, M. K., M. Ito, C. D. Gilbert, and G. Westheimer. 1995. “Improvement in Visual Sensitivity by Changes in Local Context: Parallel Studies in Human Observers and in V1 of Alert Monkeys.” Neuron 15, no. 4: 843–856. https://doi.org/10.1016/0896‐6273(95)90175‐2.
Kelly, S. P., M. Gomez‐Ramirez, and J. J. Foxe. 2008. “Spatial Attention Modulates Initial Afferent Activity in Human Primary Visual Cortex.” Cerebral Cortex 18, no. 11: 2629–2636. https://doi.org/10.1093/cercor/bhn022.
Kelly, S. P., C. E. Schroeder, and E. C. Lalor. 2013. “What Does Polarity Inversion of Extrastriate Activity Tell Us About Striate Contributions to the Early VEP? A Comment on Ales Et al. (2010).” NeuroImage 76: 442–445. https://doi.org/10.1016/j.neuroimage.2012.03.081.
Kelly, S. P., M. I. Vanegas, C. E. Schroeder, and E. C. Lalor. 2013. “The Cruciform Model of Striate Generation of the Early VEP, Re‐Illustrated, Not Revoked: A Reply to Ales Et al. (2013).” NeuroImage 82: 154–159. https://doi.org/10.1016/j.neuroimage.2013.05.112.
Kenemans, J. L., J. M. P. Baas, G. R. Mangun, M. Lijffijt, and M. N. Verbaten. 2000. “On the Processing of Spatial Frequencies as Revealed by Evoked‐Potential Source Modeling.” Clinical Neurophysiology 111, no. 6: 1113–1123. https://doi.org/10.1016/S1388‐2457(00)00270‐4.
Knight, R. T., D. Scabini, D. L. Woods, and C. C. Clayworth. 1989. “Contributions of Temporal‐Parietal Junction to the Human Auditory P3.” Brain Research 502, no. 1: 109–116. https://doi.org/10.1016/0006‐8993(89)90466‐6.
Kok, P., M. F. Failing, and F. P. De Lange. 2014. “Prior Expectations Evoke Stimulus Templates in the Primary Visual Cortex.” Journal of Cognitive Neuroscience 26, no. 7: 1546–1554. https://doi.org/10.1162/jocn_a_00562.
Kok, P., J. F. M. Jehee, and F. P. de Lange. 2012. “Less Is More: Expectation Sharpens Representations in the Primary Visual Cortex.” Neuron 75, no. 2: 265–270. https://doi.org/10.1016/j.neuron.2012.04.034.
Kok, P., D. Rahnev, J. F. M. Jehee, H. C. Lau, and F. P. De Lange. 2012. “Attention Reverses the Effect of Prediction in Silencing Sensory Signals.” Cerebral Cortex 22, no. 9: 2197–2206. https://doi.org/10.1093/cercor/bhr310.
Kolers, P. A. 1963. “Some Differences Between Real and Apparent Visual Movement.” Vision Research 3, no. 5–6: 191–206.
Kristensen, E., B. Rivet, and A. Guérin‐Dugué. 2017. “Estimation of Overlapped Eye Fixation Related Potentials: The General Linear Model, a More Flexible Framework Than the ADJAR Algorithm.” Journal of Eye Movement Research 10, no. 1: 1–27. https://doi.org/10.16910/jemr.10.1.7.
Kuznetsova, A., P. B. Brockhoff, and R. H. B. Christensen. 2017. “lmerTest Package: Tests in Linear Mixed Effects Models.” Journal of Statistical Software 82, no. 13: 1–26. https://doi.org/10.18637/jss.v082.i13.
Lamme, V. A. F., and P. R. Roelfsema. 2000. “The Distinct Modes of Vision Offered by Feedforward and Recurrent Processing.” Trends in Neurosciences 23, no. 11: 571–579. https://doi.org/10.1016/S0166‐2236(00)01657‐X.
Larson, E., A. Gramfort, D. A. Engemann, et al. 2023. ““MNE‐Python (Version v1.3.1).” [Computer software]. Zenodo. https://doi.org/10.5281/ZENODO.7671973.
Luck, S. J., G. F. Woodman, and E. K. Vogel. 2000. “Event‐Related Potential Studies of Attention.” Trends in Cognitive Sciences 4, no. 11: 432–440. https://doi.org/10.1016/S1364‐6613(00)01545‐X.
Lüdecke, D., M. Ben‐Shachar, I. Patil, P. Waggoner, and D. Makowski. 2021. “Performance: An R Package for Assessment, Comparison and Testing of Statistical Models.” Journal of Open Source Software 6, no. 60: 3139. https://doi.org/10.21105/joss.03139.
Mangun, G. R., and S. A. Hillyard. 1988. “Spatial Gradients of Visual Attention: Behavioral and Electrophysiological Evidence.” Electroencephalography and Clinical Neurophysiology 70, no. 5: 417–428. https://doi.org/10.1016/0013‐4694(88)90019‐3.
Mangun, G. R., H. Hinrichs, M. Scholz, et al. 2001. “Integrating Electrophysiology and Neuroimaging of Spatial Selective Attention to Simple Isolated Visual Stimuli.” Vision Research 41, no. 10–11: 1423–1435. https://doi.org/10.1016/S0042‐6989(01)00046‐3.
Mars, R. B., S. Debener, T. E. Gladwin, et al. 2008. “Trial‐By‐Trial Fluctuations in the Event‐Related Electroencephalogram Reflect Dynamic Changes in the Degree of Surprise.” Journal of Neuroscience 28, no. 47: 12539–12545. https://doi.org/10.1523/JNEUROSCI.2925‐08.2008.
Martı́nez, A., L. Anllo‐Vento, M. I. Sereno, et al. 1999. “Involvement of Striate and Extrastriate Visual Cortical Areas in Spatial Attention.” Nature Neuroscience 2, no. 4: 364–369. https://doi.org/10.1038/7274.
Martı́nez, A., F. DiRusso, L. Anllo‐Vento, M. I. Sereno, R. B. Buxton, and S. A. Hillyard. 2001. “Putting Spatial Attention on the Map: Timing and Localization of Stimulus Selection Processes in Striate and Extrastriate Visual Areas.” Vision Research 41, no. 10–11: 1437–1457. https://doi.org/10.1016/S0042‐6989(00)00267‐4.
Marzecová, A., A. Widmann, I. SanMiguel, S. A. Kotz, and E. Schröger. 2017. “Interrelation of Attention and Prediction in Visual Processing: Effects of Task‐Relevance and Stimulus Probability.” Biological Psychology 125: 76–90. https://doi.org/10.1016/j.biopsycho.2017.02.009.
Matuschek, H., R. Kliegl, S. Vasishth, H. Baayen, and D. Bates. 2017. “Balancing Type I Error and Power in Linear Mixed Models.” Journal of Memory and Language 94: 305–315. https://doi.org/10.1016/j.jml.2017.01.001.
Meyniel, F., M. Maheu, and S. Dehaene. 2016. “Human Inferences About Sequences: A Minimal Transition Probability Model.” PLoS Computational Biology 12, no. 12: e1005260. https://doi.org/10.1371/journal.pcbi.1005260.
Mohr, K. S., N. Carr, R. Georgel, and S. P. Kelly. 2020. “Modulation of the Earliest Component of the Human VEP by Spatial Attention: An Investigation of Task Demands.” Cerebral Cortex Communications 1, no. 1: tgaa045. https://doi.org/10.1093/texcom/tgaa045.
Mohr, K. S., A. C. Geuzebroek, and S. P. Kelly. 2024. “Visual Cortical Area Contributions to the Transient, Multifocal and Steady‐State VEP: A Forward Model‐Informed Analysis.” Imaging Neuroscience 2: 00152. https://doi.org/10.1162/imag_a_00152.
Muckli, L., A. Kohler, N. Kriegeskorte, and W. Singer. 2005. “Primary Visual Cortex Activity Along the Apparent‐Motion Trace Reflects Illusory Perception.” PLoS Biology 3, no. 8: e265. https://doi.org/10.1371/journal.pbio.0030265.
Muckli, L., and L. S. Petro. 2013. “Network Interactions: Non‐Geniculate Input to V1.” Current Opinion in Neurobiology 23, no. 2: 195–201. https://doi.org/10.1016/j.conb.2013.01.020.
Nartker, M., C. Firestone, H. Egeth, and I. Phillips. 2025. “Sensitivity to Visual Features in Inattentional Blindness.” eLife 13: RP100337. https://doi.org/10.7554/eLife.100337.
Noesselt, T., S. A. Hillyard, M. G. Woldorff, et al. 2002. “Delayed Striate Cortical Activation During Spatial Attention.” Neuron 35, no. 3: 575–587. https://doi.org/10.1016/S0896‐6273(02)00781‐X.
Peirce, J., J. R. Gray, S. Simpson, et al. 2019. “PsychoPy2: Experiments in Behavior Made Easy.” Behavior Research Methods 51, no. 1: 195–203. https://doi.org/10.3758/s13428‐018‐01193‐y.
Pitts, M. A., A. Martinez, and S. A. Hillyard. 2010. “When and Where Is Binocular Rivalry Resolved in the Visual Cortex?” Journal of Vision 10, no. 14: 25. https://doi.org/10.1167/10.14.25.
Polich, J. 2007. “Updating P300: An Integrative Theory of P3a and P3b.” Clinical Neurophysiology 118, no. 10: 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019.
Polich, J. 2020. “50+ Years of P300: Where are We Now?” Psychophysiology 57, no. 7: e13616. https://doi.org/10.1111/psyp.13616.
Polich, J., and T. Bondurant. 1997. “P300 Sequence Effects, Probability, and Interstimulus Interval.” Physiology & Behavior 61, no. 6: 843–849. https://doi.org/10.1016/S0031‐9384(96)00564‐1.
Proverbio, A. M., M. Del Zotto, and A. Zani. 2007. “Inter‐Individual Differences in the Polarity of Early Visual Responses and Attention Effects.” Neuroscience Letters 419, no. 2: 131–136. https://doi.org/10.1016/j.neulet.2007.04.048.
Proverbio, A. M., M. Del Zotto, and A. Zani. 2010. “Electrical Neuroimaging Evidence That Spatial Frequency‐Based Selective Attention Affects V1 Activity as Early as 40–60 Ms in Humans.” BMC Neuroscience 11, no. 1: 59. https://doi.org/10.1186/1471‐2202‐11‐59.
Qin, N., F. Crespi, A. M. Proverbio, and G. Pourtois. 2023. “A Systematic Exploration of Attentional Load Effects on the C1 ERP Component.” Psychophysiology 60, no. 6: e14301. https://doi.org/10.1111/psyp.14301.
Qin, N., S. Wiens, K. Rauss, and G. Pourtois. 2022. “Effects of Selective Attention on the C1 ERP Component: A Systematic Review and Meta‐Analysis.” Psychophysiology 59, no. 12: e14123. https://doi.org/10.1111/psyp.14123.
R Core Team. 2022. R: A Language and Environment for Statistical Computing (Version 4.2.0). R Foundation for Statistical Computing. https://www.R‐project.org/.
Rao, R. P. N., and D. H. Ballard. 1999. “Predictive Coding in the Visual Cortex: A Functional Interpretation of Some Extra‐Classical Receptive‐Field Effects.” Nature Neuroscience 2, no. 1: 79–87. https://doi.org/10.1038/4580.
Rauss, K., S. Schwartz, and G. Pourtois. 2011. “Top‐Down Effects on Early Visual Processing in Humans: A Predictive Coding Framework.” Neuroscience & Biobehavioral Reviews 35, no. 5: 1237–1253. https://doi.org/10.1016/j.neubiorev.2010.12.011.
Richter, D., and F. P. De Lange. 2019. “Statistical Learning Attenuates Visual Activity Only for Attended Stimuli.” eLife 8: e47869. https://doi.org/10.7554/eLife.47869.
Rossi, V., and G. Pourtois. 2012. “State‐Dependent Attention Modulation of Human Primary Visual Cortex: A High Density ERP Study.” NeuroImage 60, no. 4: 2365–2378. https://doi.org/10.1016/j.neuroimage.2012.02.007.
Rossi, V., and G. Pourtois. 2014. “Electrical Neuroimaging Reveals Content‐Specific Effects of Threat in Primary Visual Cortex and Fronto‐Parietal Attentional Networks.” NeuroImage 98: 11–22. https://doi.org/10.1016/j.neuroimage.2014.04.064.
Samaha, J., P. Bauer, S. Cimaroli, and B. R. Postle. 2015. “Top‐Down Control of the Phase of Alpha‐Band Oscillations as a Mechanism for Temporal Prediction.” Proceedings of the National Academy of Sciences 112, no. 27: 8439–8444. https://doi.org/10.1073/pnas.1503686112.
Sauseng, P., W. Klimesch, W. R. Gruber, S. Hanslmayr, R. Freunberger, and M. Doppelmayr. 2007. “Are Event‐Related Potential Components Generated by Phase Resetting of Brain Oscillations? A Critical Discussion.” Neuroscience 146, no. 4: 1435–1444. https://doi.org/10.1016/j.neuroscience.2007.03.014.
Simpson, A. J., and M. J. Fitter. 1973. “What Is the Best Index of Detectability?” Psychological Bulletin 80, no. 6: 481–488. https://doi.org/10.1037/h0035203.
Skukies, R., and B. V. Ehinger. 2023. “The Effect of Estimation Time Window Length on Overlap Correction in EEG Data.” https://doi.org/10.1101/2023.06.05.543689.
Slotnick, S. D. 2018. “The Experimental Parameters That Affect Attentional Modulation of the ERP C1 Component.” Cognitive Neuroscience 9, no. 1–2: 53–62. https://doi.org/10.1080/17588928.2017.1369021.
Smith, A. T., K. D. Singh, K. L. Williams, and M. W. Greenlee. 2001. “Estimating Receptive Field Size From fMRI Data in Human Striate and Extrastriate Visual Cortex.” Cerebral Cortex 11, no. 12: 1182–1190. https://doi.org/10.1093/cercor/11.12.1182.
Smith, N. J., and M. Kutas. 2015. “Regression‐Based Estimation of ERP Waveforms: I the rERP Framework.” Psychophysiology 52, no. 2: 157–168. https://doi.org/10.1111/psyp.12317.
Squires, K. C., C. Wickens, N. K. Squires, and E. Donchin. 1976. “The Effect of Stimulus Sequence on the Waveform of the Cortical Event‐Related Potential.” Science 193, no. 4258: 1142–1146. https://doi.org/10.1126/science.959831.
Steiner, G. Z., R. J. Barry, and C. J. Gonsalvez. 2013. “Can Working Memory Predict Target‐to‐Target Interval Effects in the P300?” International Journal of Psychophysiology 89, no. 3: 399–408. https://doi.org/10.1016/j.ijpsycho.2013.07.011.
Sterzer, P., J.‐D. Haynes, and G. Rees. 2006. “Primary Visual Cortex Activation on the Path of Apparent Motion Is Mediated by Feedback From hMT+/V5.” NeuroImage 32, no. 3: 1308–1316. https://doi.org/10.1016/j.neuroimage.2006.05.029.
Summerfield, C., and T. Egner. 2009. “Expectation (And Attention) in Visual Cognition.” Trends in Cognitive Sciences 13, no. 9: 403–409. https://doi.org/10.1016/j.tics.2009.06.003.
Talsma, D., and M. G. Woldorff. 2004. “Methods for the Estimation and Removal of Artifacts and Overlap in ERP Data.” In Event‐Related Potentials: A Methods Handbook, edited by T. Handy. MIT Press.
Thomas, E. R., J. Haarsma, J. Nicholson, D. Yon, P. Kok, and C. Press. 2024. “Predictions and Errors are Distinctly Represented Across V1 Layers.” Current Biology 34, no. 10: 2265–2271.e4. https://doi.org/10.1016/j.cub.2024.04.036.
Tootell, R., J. Reppas, K. Kwong, et al. 1995. “Functional Analysis of Human MT and Related Visual Cortical Areas Using Magnetic Resonance Imaging.” Journal of Neuroscience 15, no. 4: 3215–3230. https://doi.org/10.1523/JNEUROSCI.15‐04‐03215.1995.
Trajkovic, J., F. Di Gregorio, G. Thut, and V. Romei. 2024. “Transcranial Magnetic Stimulation Effects Support an Oscillatory Model of ERP Genesis.” Current Biology 34: 1048–1058.e4. https://doi.org/10.1016/j.cub.2024.01.069.
Vetter, P., M.‐H. Grosbras, and L. Muckli. 2015. “TMS Over V5 Disrupts Motion Prediction.” Cerebral Cortex 25, no. 4: 1052–1059. https://doi.org/10.1093/cercor/bht297.
Woldorff, M. G. 1993. “Distortion of ERP Averages due to Overlap From Temporally Adjacent ERPs: Analysis and Correction.” Psychophysiology 30, no. 1: 98–119. https://doi.org/10.1111/j.1469‐8986.1993.tb03209.x.
Wolf, M.‐I., M. Bruchmann, G. Pourtois, S. Schindler, and T. Straube. 2022. “Top‐Down Modulation of Early Visual Processing in V1: Dissociable Neurophysiological Effects of Spatial Attention, Attentional Load and Task‐Relevance.” Cerebral Cortex 32, no. 10: 2112–2128. https://doi.org/10.1093/cercor/bhab342.
Worden, M. S., J. J. Foxe, N. Wang, and G. V. Simpson. 2000. “Anticipatory Biasing of Visuospatial Attention Indexed by Retinotopically Specific α‐Bank Electroencephalography Increases Over Occipital Cortex.” Journal of Neuroscience 20, no. 6: RC63. https://doi.org/10.1523/JNEUROSCI.20‐06‐j0002.2000.
Zeki, S., J. Watson, C. Lueck, K. Friston, C. Kennard, and R. Frackowiak. 1991. “A Direct Demonstration of Functional Specialization in Human Visual Cortex.” Journal of Neuroscience 11, no. 3: 641–649. https://doi.org/10.1523/JNEUROSCI.11‐03‐00641.1991.
Weitere Informationen
Visual processing is influenced by spatial attention and prediction. Yet, in humans, it is still unclear if early sensory processing in the primary visual cortex (V1) is influenced by these top-down factors. To answer this question, various EEG studies have looked at the retinotopic C1 event-related potential (ERP), which arises from V1. Despite the fact that research on this question has been ongoing for more than two decades, discrepant findings have been reported. One reason for this heterogeneity could be due to the majority of studies focusing mostly on attention, without considering the possible role of prediction. Another reason could stem from the C1's specific sensitivities to stimulus features and individual differences. To address these issues, we developed a new paradigm that maximally utilizes the visual and spatial properties of the C1 and allows for the factorial manipulation of spatial attention and prediction. We also used gaze-contingent eye-tracking to confirm the use of peripheral vision to process the stimuli. Additionally, to account for the individual differences in the C1 response the experiment was tailored to each participant using an independent localizer. The ERP results showed a significantly smaller C1 amplitude in the upper visual field when attention was directed toward the peripheral stimulus as opposed to when it was directed away toward the center of the screen. After applying linear deconvolution to correct for temporal overlap between sequential ERP responses, this effect disappeared. We found that attention influenced the P1, while prediction mostly affected the P3. These novel results suggest that early sensory processing in V1 is not directly influenced by either attention or prediction; their effects are dissociable and mostly concern the P1 and P3 ERP components.
(© 2026 Society for Psychophysiological Research.)