Treffer: Machine learning for extracellular vesicles enables diagnostic and therapeutic nanobiotechnology.
Kumar MA, Baba SK, Sadida HQ, Marzooqi SA, Jerobin J, Altemani FH et al. Extracellular vesicles as tools and targets in therapy for diseases. Signal transduct target ther [Internet]. Nature Publishing Group; 2024 [cited 2025 Apr 7];9:1–41. https://doi.org/10.1038/s41392-024-01735-1.
Greenberg ZF, Graim KS, He M. Towards artificial intelligence-enabled extracellular vesicle precision drug delivery. Adv Drug Deliv Rev [Internet]. 2023;199:114974. https://doi.org/10.1016/j.addr.2023.114974. [cited 2025 Apr 7];.
Doyle LM, Wang MZ. Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis. Cells [Internet]. 2019 [cited 2025 Apr 7];8:727. https://doi.org/10.3390/cells8070727.
Kim HI, Park J, Zhu Y, Wang X, Han Y, Zhang D. Recent advances in extracellular vesicles for therapeutic cargo delivery. Exp Mol Med [Internet] Nat Publishing Group. 2024;56:836–49. https://doi.org/10.1038/s12276-024-01201-6. [cited 2025 Apr 7];.
Baxter JSH, Eagleson R. Exploring the values underlying machine learning research in medical image analysis. Med Image Anal [Internet]. 2025 [cited 2025 Apr 7];102:103494. https://doi.org/10.1016/j.media.2025.103494.
Xu M, Ji J, Jin D, Wu Y, Wu T, Lin R et al. The biogenesis and secretion of exosomes and multivesicular bodies (MVBs): intercellular shuttles and implications in human diseases. Genes Dis [Internet]. 2022 [cited 2025 Apr 7];10:1894–907. https://doi.org/10.1016/j.gendis.2022.03.021.
Yu L, Zhu G, Zhang Z, Yu Y, Zeng L, Xu Z, et al. Apoptotic bodies: bioactive treasure left behind by the dying cells with robust diagnostic and therapeutic application potentials. J Nanobiotechnol [Internet]. 2023;21:218. https://doi.org/10.1186/s12951-023-01969-1. [cited 2025 Apr 7];.
Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles [Internet]. 2013;2. https://doi.org/10.3402/jev.v2i0.20360. [cited 2025 Apr 7];.
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer [Internet]. 2025;24:45. https://doi.org/10.1186/s12943-025-02233-w. [cited 2025 Apr 7];.
Uddin MJ, Mohite P, Munde S, Ade N, Oladosu TA, Chidrawar VR, et al. Extracellular vesicles: the future of therapeutics and drug delivery systems. Intell Pharm [Internet]. 2024;2:312–28. https://doi.org/10.1016/j.ipha.2024.02.004. [cited 2025 Apr 7];.
Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today [Internet]. 2020 [cited 2025 Apr 7];26:80. https://doi.org/10.1016/j.drudis.2020.10.010.
Radivojević T, Costello Z, Workman K, Garcia Martin H. A machine learning automated recommendation tool for synthetic biology. Nat Commun [Internet] Nat Publishing Group. 2020;11:4879. https://doi.org/10.1038/s41467-020-18008-4. [cited 2025 Apr 7];.
Dixson A, Dawson TR, Di Vizio D, Weaver AM. Context-specific regulation of extracellular vesicle biogenesis and cargo selection. Nat Rev Mol Cell Biol [Internet]. 2023;24:454–76. https://doi.org/10.1038/s41580-023-00576-0. [cited 2025 Apr 7];.
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal [Internet]. 2024;22:25. https://doi.org/10.1186/s12964-023-01408-6. [cited 2025 Apr 7];.
Ge X, Meng Q, Liu X, Shi S, Geng X, Wang E, et al. Extracellular vesicles from normal tissues orchestrate the homeostasis of macrophages and attenuate inflammatory injury of sepsis. Bioeng Transl Med [Internet]. 2023;9:e10609. https://doi.org/10.1002/btm2.10609. [cited 2025 Apr 7];.
Couch Y, Buzàs EI, Vizio DD, Gho YS, Harrison P, Hill AF, et al. A brief history of nearly EV-erything – The rise and rise of extracellular vesicles. J Extracell Vesicles [Internet]. 2021;10:e12144. https://doi.org/10.1002/jev2.12144. [cited 2025 Apr 7];.
Roefs MT, Sluijter JPG, Vader P. Extracellular Vesicle-Associated Proteins in Tissue Repair. Trends Cell Biol [Internet]. 2020 [cited 2025 Apr 7];30:990–1013. https://doi.org/10.1016/j.tcb.2020.09.009.
Fernández-Delgado I, Calzada-Fraile D, Sánchez-Madrid F. Immune regulation by dendritic cell extracellular vesicles in cancer immunotherapy and Vaccines. cancers [Internet]. 2020 [cited 2025 Apr 7];12:3558. https://doi.org/10.3390/cancers12123558.
Fu X, Song J, Yan W, Downs BM, Wang W, Li J. The biological function of tumor-derived extracellular vesicles on metabolism. Cell Commun Signal CCS [Internet]. 2023;21:150. https://doi.org/10.1186/s12964-023-01111-6. [cited 2025 Apr 7];.
Li D, Chu X, Ning Y, Yang Y, Wang C, Tian X, et al. The functional extracellular vesicles target tumor microenvironment for Gastrointestinal malignancies therapy. Extracell Vesicle [Internet]. 2025;5:100077. https://doi.org/10.1016/j.vesic.2025.100077. [cited 2025 Apr 7];.
Zhang C, Qin C, Dewanjee S, Bhattacharya H, Chakraborty P, Jha NK et al. Tumor-derived small extracellular vesicles in cancer invasion and metastasis: molecular mechanisms, and clinical significance. Mol Cancer [Internet]. 2024 [cited 2025 Apr 7];23:18. https://doi.org/10.1186/s12943-024-01932-0.
Ja W, Dci G, Ei LO. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles [Internet] J. 2024. https://doi.org/10.1002/jev2.12404. [cited 2025 Apr 7];13. Extracell Vesicles.
Sarker IH. Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Comput Sci [Internet]. 2021 [cited 2025 Apr 7];2:160. https://doi.org/10.1007/s42979-021-00592-x.
Iniesta R, Stahl D, McGuffin P. Machine learning, statistical learning and the future of biological research in psychiatry. Psychol Med [Internet]. 2016;46:2455–65. https://doi.org/10.1017/S0033291716001367. [cited 2025 Apr 7];.
Obaido G, Mienye ID, Egbelowo OF, Emmanuel ID, Ogunleye A, Ogbuokiri B, et al. Supervised machine learning in drug discovery and development: Algorithms, applications, challenges, and prospects. Mach Learn Appl [Internet]. 2024;17:100576. https://doi.org/10.1016/j.mlwa.2024.100576. [cited 2025 Apr 7];.
Dike HU, Zhou Y, Deveerasetty KK, Wu Q. Unsupervised Learning Based On Artificial Neural Network: A Review. 2018 IEEE Int Conf Cyborg Bionic Syst CBS [Internet]. 2018 [cited 2025 Apr 7]. pp. 322–7. https://doi.org/10.1109/CBS.2018.8612259.
Shakya AK, Pillai G, Chakrabarty S. Reinforcement learning algorithms: A brief survey. Expert Syst Appl [Internet]. 2023;231:120495. https://doi.org/10.1016/j.eswa.2023.120495. [cited 2025 Apr 7];.
Cockrell C, An G. Utilizing the heterogeneity of clinical data for model refinement and rule discovery through the application of genetic algorithms to calibrate a High-Dimensional Agent-Based model of systemic inflammation. Front Physiol. 2021;12:662845. https://doi.org/10.3389/fphys.2021.662845.
Li Y, Sui S, Goel A. Extracellular vesicles associated micrornas: their biology and clinical significance as biomarkers in Gastrointestinal cancers. Semin Cancer Biol. 2024;99:5–23. https://doi.org/10.1016/j.semcancer.2024.02.001.
Han G-R, Goncharov A, Eryilmaz M, Ye S, Palanisamy B, Ghosh R, et al. Machine learning in point-of-care testing: innovations, challenges, and opportunities. Nat Commun [Internet] Nat Publishing Group. 2025;16:3165. https://doi.org/10.1038/s41467-025-58527-6. [cited 2025 Apr 7];.
Lin M, Guo J, Gu Z, Tang W, Tao H, You S, et al. Machine learning and multi-omics integration: advancing cardiovascular translational research and clinical practice. J Transl Med [Internet]. 2025;23:388. https://doi.org/10.1186/s12967-025-06425-2. [cited 2025 Apr 7];.
Reel PS, Reel S, Pearson E, Trucco E, Jefferson E. Using machine learning approaches for multi-omics data analysis: A review. Biotechnol Adv. 2021;49:107739. https://doi.org/10.1016/j.biotechadv.2021.107739.
Mansoor S, Hamid S, Tuan TT, Park J-E, Chung YS. Advance computational tools for multiomics data learning. Biotechnol Adv [Internet]. 2024;77:108447. https://doi.org/10.1016/j.biotechadv.2024.108447. [cited 2025 Apr 7];.
Badwan BA, Liaropoulos G, Kyrodimos E, Skaltsas D, Tsirigos A, Gorgoulis VG. Machine learning approaches to predict drug efficacy and toxicity in oncology. Cell Rep Methods [Internet]. 2023;3:100413. https://doi.org/10.1016/j.crmeth.2023.100413. [cited 2025 Apr 7];.
Carli F, Di Chiaro P, Morelli M, Arora C, Bisceglia L, De Oliveira Rosa N, et al. Learning and actioning general principles of cancer cell drug sensitivity. Nat Commun [Internet] Nat Publishing Group. 2025;16:1654. https://doi.org/10.1038/s41467-025-56827-5. [cited 2025 Apr 7];.
Iqbal S, Qureshi N, Li A, Mahmood J. On the analyses of medical images using traditional machine learning techniques and convolutional neural networks. Arch Comput Methods Eng [Internet]. 2023;30:3173–233. https://doi.org/10.1007/s11831-023-09899-9. [cited 2025 Apr 7];.
Wang X, Zhao J, Marostica E, Yuan W, Jin J, Zhang J, et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nat [Internet] Nat Publishing Group. 2024;634:970–8. https://doi.org/10.1038/s41586-024-07894-z. [cited 2025 Mar 17];.
Cioanca AV, Wooff Y, Aggio-Bruce R, Sekar R, Dietrich C, Natoli R. Multiomic integration reveals neuronal‐extracellular vesicle coordination of gliotic responses in degeneration. J Extracell Vesicles [Internet]. 2023;12:12393. https://doi.org/10.1002/jev2.12393. [cited 2025 Apr 7];.
Cascarano A, Mur-Petit J, Hernández-González J, Camacho M, de Toro Eadie N, Gkontra P, et al. Machine and deep learning for longitudinal biomedical data: a review of methods and applications. Artif Intell Rev [Internet]. 2023;56:1711–71. https://doi.org/10.1007/s10462-023-10561-w. [cited 2025 Apr 7];.
Sim J-A, Huang X, Horan MR, Stewart CM, Robison LL, Hudson MM, et al. Natural Language processing with machine learning methods to analyze unstructured patient-reported outcomes derived from electronic health records: A systematic review. Artif Intell Med. 2023;146:102701. https://doi.org/10.1016/j.artmed.2023.102701.
Lai L, Su Y, Hu C, Peng Z, Xue W, Dong L et al. Integrating Aggregate Materials and Machine Learning Algorithms: Advancing Detection of Pathogen-Derived Extracellular Vesicles. Aggregate [Internet]. [cited 2025 Apr 7];n/a:e70018. https://doi.org/10.1002/agt2.70018.
Ostojic D, Lalousis PA, Donohoe G, Morris DW. The challenges of using machine learning models in psychiatric research and clinical practice. Eur Neuropsychopharmacol [Internet]. 2024;88:53–65. https://doi.org/10.1016/j.euroneuro.2024.08.005. [cited 2025 Apr 7];.
Bukva M, Dobra G, Gyukity-Sebestyen E, Boroczky T, Korsos MM, Meckes DG, et al. Machine learning-based analysis of cancer cell-derived vesicular proteins revealed significant tumor-specificity and predictive potential of extracellular vesicles for cell invasion and proliferation - A meta-analysis. Cell Commun Signal CCS. 2023;21:333. https://doi.org/10.1186/s12964-023-01344-5.
Wang W, Li M, Chen Z, Xu L, Chang M, Wang K, et al. Biogenesis and function of extracellular vesicles in pathophysiological processes of skeletal muscle atrophy. Biochem Pharmacol [Internet]. 2022;198:114954. https://doi.org/10.1016/j.bcp.2022.114954. [cited 2025 Apr 7];.
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO et al. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. Extracell Vesicle [Internet]. 2024 [cited 2025 Apr 7];3:100034. https://doi.org/10.1016/j.vesic.2024.100034.
Alber M, Buganza Tepole A, Cannon WR, De S, Dura-Bernal S, Garikipati K, et al. Integrating machine learning and multiscale modeling—perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences. Npj Digit Med [Internet] Nat Publishing Group. 2019;2:1–11. https://doi.org/10.1038/s41746-019-0193-y. [cited 2025 Apr 7];.
Yaqoob A, Musheer Aziz R, verma NK. Applications and Techniques of Machine Learning in Cancer Classification: A Systematic Review. Hum-Centric Intell Syst [Internet]. 2023 [cited 2025 Apr 8];3:588–615. https://doi.org/10.1007/s44230-023-00041-3.
Gómez-de-Mariscal E, Maška M, Kotrbová A, Pospíchalová V, Matula P, Muñoz-Barrutia A. Deep-Learning-Based segmentation of small extracellular vesicles in transmission electron microscopy images. Sci Rep [Internet] Nat Publishing Group. 2019;9:13211. https://doi.org/10.1038/s41598-019-49431-3. [cited 2025 Apr 8];.
Nikishin I, Dulimov R, Skryabin G, Galetsky S, Tchevkina E, Bagrov D. ScanEV – A neural network-based tool for the automated detection of extracellular vesicles in TEM images. Micron [Internet]. 2021 [cited 2025 Apr 8];145:103044. https://doi.org/10.1016/j.micron.2021.103044.
Su Y, He W, Zheng L, Fan X, Hu TY. Toward clarity in single extracellular vesicle research: defining the field and correcting missteps. ACS Nano [Internet]. 2025 [cited 2025 Nov 30];19:16193. https://doi.org/10.1021/acsnano.5c00705.
Isogai T, Hirosawa KM, Suzuki KGN. Recent advancements in imaging techniques for individual extracellular Vesicles. Molecules [Internet]. Volume 29. Multidisciplinary Digital Publishing Institute; 2024. p. 5828. [cited 2025 Apr 8];. https://doi.org/10.3390/molecules29245828.
Gangadaran P, Khan F, Rajendran RL, Onkar A, Goenka A, Ahn B. Unveiling invisible extracellular vesicles: Cutting-Edge technologies for their in vivo visualization. Wiley Interdiscip Rev Nanomed Nanobiotechnol [Internet]. 2024 [cited 2025 Apr 8];16:e2009. https://doi.org/10.1002/wnan.2009.
Luan S, Yu X, Lei S, Ma C, Wang X, Xue X, et al. Deep learning for fast super-resolution ultrasound microvessel imaging. Phys Med Biol [Internet] IOP Publishing. 2023;68:245023. https://doi.org/10.1088/1361-6560/ad0a5a. [cited 2025 Nov 30];.
Malenica M, Vukomanović M, Kurtjak M, Masciotti V, dal Zilio S, Greco S et al. Perspectives of Microscopy Methods for Morphology Characterisation of Extracellular Vesicles from Human Biofluids. Biomedicines [Internet]. 2021 [cited 2025 Apr 8];9:603. https://doi.org/10.3390/biomedicines9060603.
Corona ML, Hurbain I, Raposo G, van Niel G. Characterization of extracellular vesicles by transmission electron microscopy and Immunolabeling electron microscopy. Methods Mol Biol Clifton NJ. 2023;2668:33–43. https://doi.org/10.1007/978-1-0716-3203-1_4.
Catanese S, Burlaud-Gaillard J, Blasco H, Blanchard E, Pisella P-J, Khanna RK et al. Rapid identification of extracellular vesicles in basal tears using transmission electron microscopy. J Fr Ophtalmol [Internet]. 2025 [cited 2025 Apr 8];48:104446. https://doi.org/10.1016/j.jfo.2025.104446.
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: Toward clinical applications. Transl Oncol [Internet]. 2024 [cited 2025 Apr 8];50:102121. https://doi.org/10.1016/j.tranon.2024.102121.
Hylton RK, Swulius MT. Challenges and triumphs in cryo-electron tomography. iScience [Internet]. 2021 [cited 2025 Apr 8];24:102959. https://doi.org/10.1016/j.isci.2021.102959.
Morandi MI, Busko P, Ozer-Partuk E, Khan S, Zarfati G, Elbaz-Alon Y, et al. Extracellular vesicle fusion visualized by cryo-electron microscopy. PNAS Nexus. 2022;1:pgac156. https://doi.org/10.1093/pnasnexus/pgac156.
Noble JM, Roberts LM, Vidavsky N, Chiou AE, Fischbach C, Paszek MJ, et al. Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J Struct Biol [Internet]. 2020;210:107474. https://doi.org/10.1016/j.jsb.2020.107474. [cited 2025 Apr 9];.
Hartjes TA, Mytnyk S, Jenster GW, van Steijn V, van Royen ME. Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches. Bioengineering [Internet]. Multidisciplinary Digital Publishing Institute; 2019 [cited 2025 Apr 9];6:7. https://doi.org/10.3390/bioengineering6010007.
Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. 2017 Int Conf Eng Technol ICET [Internet]. 2017 [cited 2024 Apr 14]. pp. 1–6. https://doi.org/10.1109/ICEngTechnol.2017.8308186.
Kotrbová A, Štěpka K, Maška M, Pálenik JJ, Ilkovics L, Klemová D et al. TEM exosomeanalyzer: a computer-assisted software tool for quantitative evaluation of extracellular vesicles in transmission electron microscopy images. J Extracell Vesicles [Internet]. 2019 [cited 2025 Apr 9];8:1560808. https://doi.org/10.1080/20013078.2018.1560808.
He K, Gkioxari G, Dollár P, Girshick R, Mask. R-CNN [Internet]. arXiv; 2018 [cited 2025 Apr 9]. https://doi.org/10.48550/arXiv.1703.06870.
Panagopoulou MS, Wark AW, Birch DJS, Gregory CD. Phenotypic analysis of extracellular vesicles: a review on the applications of fluorescence. J Extracell Vesicles [Internet]. [cited 2025 Apr 9];9:1710020. https://doi.org/10.1080/20013078.2019.1710020.
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, et al. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer [Internet]. 2025;24:63. https://doi.org/10.1186/s12943-025-02240-x. [cited 2025 Apr 9];.
Hallal S, Tűzesi Á, Grau GE, Buckland ME, Alexander KL. Understanding the extracellular vesicle surface for clinical molecular biology. J Extracell Vesicles [Internet]. 2022;11:e12260. https://doi.org/10.1002/jev2.12260. [cited 2025 Apr 9];.
Saint-Pol J, Culot M. Minimum information for studies of extracellular vesicles (MISEV) as toolbox for rigorous, reproducible and homogeneous studies on extracellular vesicles. Toxicol Vitro [Internet]. 2025;106:106049. https://doi.org/10.1016/j.tiv.2025.106049. [cited 2025 Apr 9];.
Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal [Internet]. 2021;19:47. https://doi.org/10.1186/s12964-021-00730-1. [cited 2025 Apr 9];.
Lu F, Cheng X, Qi X, Li D, Hu L. Metabolic landscaping of extracellular vesicles from body fluids by phosphatidylserine imprinted polymer enrichment and mass spectrometry analysis. Talanta [Internet]. 2025 [cited 2025 Apr 9];282:126940. https://doi.org/10.1016/j.talanta.2024.126940.
Cross J, Rai A, Fang H, Claridge B, Greening DW. Rapid and in-depth proteomic profiling of small extracellular vesicles for ultralow samples. Proteomics. 2024;24:e2300211. https://doi.org/10.1002/pmic.202300211.
Fan S, Poetsch A. Proteomic Research of Extracellular Vesicles in Clinical Biofluid. Proteomes [Internet]. 2023 [cited 2025 Apr 9];11:18. https://doi.org/10.3390/proteomes11020018.
Yin H, Xie J, Xing S, Lu X, Yu Y, Ren Y, et al. Machine learning-based analysis identifies and validates serum Exosomal proteomic signatures for the diagnosis of colorectal cancer. Cell Rep Med [Internet]. 2024;5:101689. https://doi.org/10.1016/j.xcrm.2024.101689. [cited 2025 Nov 30];.
Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights into the proteomic profiling of extracellular vesicles for the identification of early biomarkers of neurodegeneration. Front Neurol [Internet]. 2020;11:580030. https://doi.org/10.3389/fneur.2020.580030. [cited 2025 Apr 9];.
Sigdel S, Swenson S, Wang J. Extracellular vesicles in neurodegenerative diseases: an update. Int J Mol Sci [Internet]. 2023;24:13161. https://doi.org/10.3390/ijms241713161. [cited 2025 Apr 9];.
Chettimada S, Lorenz DR, Misra V, Wolinsky SM, Gabuzda D. Small RNA sequencing of extracellular vesicles identifies Circulating MiRNAs related to inflammation and oxidative stress in HIV patients. BMC Immunol [Internet]. 2020;21:57. https://doi.org/10.1186/s12865-020-00386-5. [cited 2025 Apr 9];.
Spanos M, Gokulnath P, Chatterjee E, Li G, Varrias D, Das S. Expanding the horizon of EV-RNAs: LncRNAs in EVs as biomarkers for disease pathways. Extracell Vesicle [Internet]. 2023;2:100025. https://doi.org/10.1016/j.vesic.2023.100025. [cited 2025 Apr 9];.
Bub A, Brenna S, Alawi M, Kügler P, Gui Y, Kretz O, et al. Multiplexed mRNA analysis of brain-derived extracellular vesicles upon experimental stroke in mice reveals increased mRNA content with potential relevance to inflammation and recovery processes. Cell Mol Life Sci CMLS [Internet]. 2022;79:329. https://doi.org/10.1007/s00018-022-04357-4. [cited 2025 Apr 9];.
Luo X, Jean-Toussaint R, Sacan A, Ajit SK. Differential RNA packaging into small extracellular vesicles by neurons and astrocytes. Cell Commun Signal [Internet]. 2021;19:75. https://doi.org/10.1186/s12964-021-00757-4. [cited 2025 Apr 9];.
Campos A, Sharma S, Obermair A, Salomon C. Extracellular Vesicle-Associated miRNAs and Chemoresistance: A Systematic Review. Cancers [Internet]. 2021 [cited 2025 Apr 9];13:4608. https://doi.org/10.3390/cancers13184608.
Li C, Zhou T, Chen J, Li R, Chen H, Luo S, et al. The role of Exosomal MiRNAs in cancer. J Transl Med [Internet]. 2022;20:6. https://doi.org/10.1186/s12967-021-03215-4. [cited 2025 Apr 9];.
Samuels M, Jones W, Towler B, Turner C, Robinson S, Giamas G. The role of non-coding RNAs in extracellular vesicles in breast cancer and their diagnostic implications. Oncogene [Internet] Nat Publishing Group. 2023;42:3017–34. https://doi.org/10.1038/s41388-023-02827-y. [cited 2025 Apr 9];.
Artner T, Sharma S, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free DNA liquid biopsies in cardiovascular disease. Atherosclerosis [Internet]. 2024;398:118583. https://doi.org/10.1016/j.atherosclerosis.2024.118583. [cited 2025 Apr 9];.
Asleh K, Dery V, Taylor C, Davey M, Djeungoue-Petga M-A, Ouellette RJ. Extracellular vesicle-based liquid biopsy biomarkers and their application in precision immuno-oncology. Biomark Res [Internet]. 2023;11:99. https://doi.org/10.1186/s40364-023-00540-2. [cited 2025 Apr 9];.
Ghanam J, Lichá K, Chetty VK, Pour OA, Reinhardt D, Tamášová B, et al. Unravelling the significance of extracellular Vesicle-Associated DNA in cancer biology and its potential clinical applications. J Extracell Vesicles [Internet]. 2025;14:e70047. https://doi.org/10.1002/jev2.70047. [cited 2025 Apr 9];.
Tsering T, Nadeau A, Wu T, Dickinson K, Burnier JV. Extracellular vesicle-associated DNA: ten years since its discovery in human blood. Cell Death Dis [Internet] Nat Publishing Group. 2024;15:1–15. https://doi.org/10.1038/s41419-024-07003-y. [cited 2025 Apr 9];.
Chen H, An Y, Wang C, Zhou J. Circulating tumor DNA in colorectal cancer: biology, methods and applications. Discov Oncol [Internet]. 2025 [cited 2025 Apr 9];16:439. https://doi.org/10.1007/s12672-025-02220-z.
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, et al. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res [Internet]. 2024;12:123. https://doi.org/10.1186/s40364-024-00661-2. [cited 2025 Apr 9];.
Malkin EZ, Bratman SV. Bioactive DNA from extracellular vesicles and particles. Cell death dis [Internet]. Volume 11. Nature Publishing Group; 2020. pp. 1–13. [cited 2025 Apr 9];. https://doi.org/10.1038/s41419-020-02803-4.
Ghadami S, Dellinger K. The lipid composition of extracellular vesicles: applications in diagnostics and therapeutic delivery. Front Mol Biosci [Internet]. 2023;10:1198044. https://doi.org/10.3389/fmolb.2023.1198044. [cited 2025 Apr 9];.
Sabatke B, Rossi IV, Sana A, Bonato LB, Ramirez MI. Extracellular vesicles biogenesis and uptake concepts: A comprehensive guide to studying host–pathogen communication. Mol Microbiol [Internet]. 2024;122:613–29. https://doi.org/10.1111/mmi.15168. [cited 2025 Apr 9];.
Soekmadji C, Li B, Huang Y, Wang H, An T, Liu C et al. The future of Extracellular Vesicles as Theranostics – an ISEV meeting report. J Extracell Vesicles [Internet]. [cited 2025 Apr 9];9:1809766. https://doi.org/10.1080/20013078.2020.1809766.
Chen J, Tian C, Xiong X, Yang Y, Zhang J. Extracellular vesicles: new horizons in neurodegeneration. eBioMedicine [Internet]. 2025 [cited 2025 Apr 9];113:105605. https://doi.org/10.1016/j.ebiom.2025.105605.
Yuan Q, Li X, Zhang S, Wang H, Wang Y. Extracellular vesicles in neurodegenerative diseases: Insights and new perspectives. Genes Dis [Internet]. 2019 [cited 2025 Apr 9];8:124–32. https://doi.org/10.1016/j.gendis.2019.12.001.
Yang J, Hu H, Guo Q, Chen X, Li S, Yin G, et al. Electrospun polylactic acid-glycolic acid composite hydrogel scaffold loaded with 3D extracellular vesicles for nasal septal cartilage defect repair. Int J Bioprinting [Internet] AccScience Publishing. 2024;10:4118. https://doi.org/10.36922/ijb.4118. [cited 2025 Nov 30];.
Lobasso S, Tanzarella P, Mannavola F, Tucci M, Silvestris F, Felici C et al. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential. Front Physiol [Internet]. Frontiers; 2021 [cited 2025 Dec 10];12. https://doi.org/10.3389/fphys.2021.748895.
Chitoiu L, Dobranici A, Gherghiceanu M, Dinescu S, Costache M. Multi-Omics Data Integration in Extracellular Vesicle Biology—Utopia or Future Reality? Int J Mol Sci [Internet]. Multidisciplinary Digital Publishing Institute; 2020 [cited 2025 Apr 9];21:8550. https://doi.org/10.3390/ijms21228550.
Youssef E, Palmer D, Fletcher B, Vaughn R. Exosomes in Precision Oncology and Beyond: From Bench to Bedside in Diagnostics and Therapeutics. Cancers [Internet]. 2025 [cited 2025 Apr 9];17:940. https://doi.org/10.3390/cancers17060940.
Fochtman D, Marczak L, Pietrowska M, Wojakowska A. Challenges of MS-based small extracellular vesicles proteomics. J Extracell Vesicles [Internet]. 2024;13:e70020. https://doi.org/10.1002/jev2.70020. [cited 2025 Apr 9];.
Mladenović D, Brealey J, Peacock B, Koort K, Zarovni N. Quantitative fluorescent nanoparticle tracking analysis and nano-flow cytometry enable advanced characterization of single extracellular vesicles. J Extracell Biol. 2025;4:e70031. https://doi.org/10.1002/jex2.70031.
Razavi Bazaz S, Zhand S, Salomon R, Beheshti EH, Jin D, Warkiani ME. ImmunoInertial microfluidics: A novel strategy for isolation of small EV subpopulations. Appl Mater Today [Internet]. 2023;30:101730. https://doi.org/10.1016/j.apmt.2022.101730. [cited 2025 Apr 9];.
von Lersner AK, Fernandes F, Ozawa PMM, Jackson M, Masureel M, Ho H et al. Multiparametric Single-Vesicle Flow Cytometry Resolves Extracellular Vesicle Heterogeneity and Reveals Selective Regulation of Biogenesis and Cargo Distribution. ACS Nano [Internet]. American Chemical Society; 2024 [cited 2025 Apr 9];18:10464–84. https://doi.org/10.1021/acsnano.3c11561.
Arthur A, Johnston EW, Winfield JM, Blackledge MD, Jones RL, Huang PH et al. Virtual biopsy in soft tissue sarcoma. How Close Are We? Front Oncol [Internet]. 2022 [cited 2025 Apr 9];12:892620. https://doi.org/10.3389/fonc.2022.892620.
Comfort N, Cai K, Bloomquist TR, Strait MD, Ferrante AW, Baccarelli AA. Nanoparticle tracking analysis for the quantification and size determination of extracellular vesicles. J Vis Exp JoVE [Internet]. 2021 [cited 2025 Apr 9];10.3791/62447. https://doi.org/10.3791/62447.
Bachurski D, Schuldner M, Nguyen P-H, Malz A, Reiners KS, Grenzi PC et al. Extracellular vesicle measurements with nanoparticle tracking analysis – An accuracy and repeatability comparison between nanosight NS300 and ZetaView. J Extracell Vesicles [Internet]. 2019 [cited 2025 Apr 9];8:1596016. https://doi.org/10.1080/20013078.2019.1596016.
Kowkabany G, Bao Y. Nanoparticle Tracking Analysis: An Effective Tool to Characterize Extracellular Vesicles. Molecules [Internet]. 2024 [cited 2025 Apr 9];29:4672. https://doi.org/10.3390/molecules29194672.
Dehghani M, Gaborski TR. Fluorescent labeling of extracellular vesicles. Methods Enzymol. 2020;645:15–42. https://doi.org/10.1016/bs.mie.2020.09.002.
Stoner SA, Duggan E, Condello D, Guerrero A, Turk JR, Narayanan PK et al. High sensitivity flow cytometry of membrane vesicles. Cytometry A [Internet]. 2016 [cited 2025 Apr 9];89:196–206. https://doi.org/10.1002/cyto.a.22787.
Pugholm LH, Revenfeld ALS, Søndergaard EKL, Jørgensen MM. Antibody-Based assays for phenotyping of extracellular vesicles. BioMed Res Int [Internet]. 2015;524817. https://doi.org/10.1155/2015/524817. [cited 2025 Apr 9];2015.
Görgens A, Bremer M, Ferrer-Tur R, Murke F, Tertel T, Horn PA, et al. Optimisation of imaging flow cytometry for the analysis of single extracellular vesicles by using fluorescence-tagged vesicles as biological reference material. J Extracell Vesicles. 2019;8:1587567. https://doi.org/10.1080/20013078.2019.1587567.
ISEV2023 Abstract Book. J Extracell Vesicles [Internet]. 2023 [cited 2025 Apr 9];12:e12329. https://doi.org/10.1002/jev2.12329.
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W et al. Extracellular vesicle Preparation and analysis: A State-of-the-Art review. Adv Sci [Internet]. 2024 [cited 2025 Apr 9];11:2401069. https://doi.org/10.1002/advs.202401069.
Paproski RJ, Pink D, Sosnowski DL, Vasquez C, Lewis JD. Building predictive disease models using extracellular vesicle microscale flow cytometry and machine learning. Mol Oncol [Internet]. 2022;17:407–21. https://doi.org/10.1002/1878-0261.13362. [cited 2025 Apr 9];.
C T, Kw W, Mj EA, Jd A. A, R A, Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J extracell vesicles [Internet]. J Extracell Vesicles; 2018 [cited 2025 Apr 10];7. https://doi.org/10.1080/20013078.2018.1535750.
Kuypers S, Smisdom N, Pintelon I, Timmermans J-P, Ameloot M, Michiels L, et al. Unsupervised machine Learning-Based clustering of nanosized fluorescent extracellular vesicles. Small Weinh Bergstr Ger. 2021;17:e2006786. https://doi.org/10.1002/smll.202006786.
Chai B, Efstathiou C, Yue H, Draviam VM. Opportunities and challenges for deep learning in cell dynamics research. Trends Cell Biol [Internet]. 2024;34:955–67. https://doi.org/10.1016/j.tcb.2023.10.010. [cited 2025 Apr 10];.
Zhang K, Hu J, Hu Y. Visualization strategies of extracellular vesicles: illuminating the invisible ‘dust’ in theranostics. Extracell Vesicle [Internet]. 2024;4:100061. https://doi.org/10.1016/j.vesic.2024.100061. [cited 2025 Apr 10];.
Chua EYD, Mendez JH, Rapp M, Ilca SL, Tan YZ, Maruthi K, et al. Better, Faster, cheaper: recent advances in Cryo–Electron microscopy. Annu Rev Biochem [Internet]. 2022;91:1–32. https://doi.org/10.1146/annurev-biochem-032620-110705. [cited 2025 Apr 10];.
Salvi M, Acharya UR, Molinari F, Meiburger KM. The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis. Comput Biol Med [Internet]. 2021;128:104129. https://doi.org/10.1016/j.compbiomed.2020.104129. [cited 2025 Apr 10];.
Yu X, Luan S, Lei S, Huang J, Liu Z, Xue X, et al. Deep learning for fast denoising filtering in ultrasound localization microscopy. Phys Med Biol [Internet] IOP Publishing. 2023;68:205002. https://doi.org/10.1088/1361-6560/acf98f. [cited 2025 Nov 30];.
Morales R-TT, Ko J. Future of digital assays to resolve clinical heterogeneity of single extracellular vesicles. ACS Nano [Internet]. 2022 [cited 2025 Apr 10];16:11619–45. https://doi.org/10.1021/acsnano.2c04337.
Li J, Wang Z, Wei Y, Li W, He M, Kang J et al. Advances in Tracing Techniques: Mapping the Trajectory of Mesenchymal Stem-Cell-Derived Extracellular Vesicles. Chem Biomed Imaging [Internet]. American Chemical Society; 2025 [cited 2025 Apr 10];3:137–68. https://doi.org/10.1021/cbmi.4c00085.
Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev [Internet]. 2018 [cited 2025 Apr 10];43:273. https://doi.org/10.1093/femsre/fuy042.
Chhibbar P, Das J. Machine learning approaches enable the discovery of therapeutics across domains. Mol Ther [Internet]. Elsevier; 2025 [cited 2025 Apr 8];0. https://doi.org/10.1016/j.ymthe.2025.04.001.
Libbrecht MW, Noble WS. Machine learning applications in genetics and genomics. Nat Rev Genet [Internet] Nat Publishing Group. 2015;16:321–32. https://doi.org/10.1038/nrg3920. [cited 2025 Apr 8];.
Kazemzadeh M, Martinez-Calderon M, Otupiri R, Artuyants A, Lowe M, Ning X, et al. Deep autoencoder as an interpretable tool for Raman spectroscopy investigation of chemical and extracellular vesicle mixtures. Biomed Opt Express. 2024;15:4220–36. https://doi.org/10.1364/BOE.522376.
Wang F, Li L, Deng J, Ai J, Mo S, Ding D, et al. Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy. Bioact Mater [Internet]. 2025;46:82–96. https://doi.org/10.1016/j.bioactmat.2024.12.001. [cited 2025 Apr 30];.
Ene J, Liu C, Syed F, Sun L, Berry D, Durairaj P et al. Biomanufacturing and lipidomics analysis of extracellular vesicles secreted by human blood vessel organoids in a vertical wheel bioreactor. Stem Cell Res Ther [Internet]. 2025 [cited 2025 Apr 30];16:207. https://doi.org/10.1186/s13287-025-04317-2.
Zhu M, Li C, Lv K, Guo H, Hou R, Tian G et al. MLSpatial: A machine-learning method to reconstruct the Spatial distribution of cells from scRNA-seq by extracting Spatial features. Comput Biol Med [Internet]. 2023 [cited 2025 Nov 30];159:106873. https://doi.org/10.1016/j.compbiomed.2023.106873.
Tomoto M, Mineharu Y, Sato N, Tamada Y, Nogami-Itoh M, Kuroda M, et al. Idiopathic pulmonary fibrosis-specific bayesian network integrating extracellular vesicle proteome and clinical information. Sci Rep [Internet] Nat Publishing Group. 2024;14:1315. https://doi.org/10.1038/s41598-023-50905-8. [cited 2025 Apr 30];.
Apostolov A, Mladenović D, Tilk K, Lõhmus A, Baev V, Yahubyan G, et al. Multi-omics analysis of uterine fluid extracellular vesicles reveals a resemblance with endometrial tissue across the menstrual cycle: biological and translational insights. Hum Reprod Open [Internet]. 2025. https://doi.org/10.1093/hropen/hoaf010. [cited 2025 Apr 30];2025:hoaf010.
(PDF) Nanoscale flow cytometry to distinguish subpopulations of prostate extracellular vesicles in patient plasma. ResearchGate [Internet]. 2024 [cited 2025 Apr 30]; https://doi.org/10.1002/pros.23764.
Kazemzadeh M, Hisey CL, Zargar-Shoshtari K, Xu W, Broderick NGR. Deep convolutional neural networks as a unified solution for Raman spectroscopy-based classification in biomedical applications. Opt Commun [Internet]. 2022;510:127977. https://doi.org/10.1016/j.optcom.2022.127977. [cited 2025 Apr 30];.
Mochalova EN, Kotov IA, Lifanov DA, Chakraborti S, Nikitin MP. Imaging flow cytometry data analysis using convolutional neural network for quantitative investigation of phagocytosis. Biotechnol Bioeng [Internet]. 2022 [cited 2025 Apr 30];119:626–35. https://doi.org/10.1002/bit.27986.
Lim H-J, Kim GW, Heo GH, Jeong U, Kim MJ, Jeong D, et al. Nanoscale single-vesicle analysis: High-throughput approaches through AI-enhanced super-resolution image analysis. Biosens Bioelectron [Internet]. 2024;263:116629. https://doi.org/10.1016/j.bios.2024.116629. [cited 2025 Apr 30];.
Sharma M, Sheth M, Poling HM, Kuhnell D, Langevin SM, Esfandiari L. Rapid purification and multiparametric characterization of Circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. Sci Rep [Internet] Nat Publishing Group. 2023;13:18293. https://doi.org/10.1038/s41598-023-45409-4. [cited 2025 Apr 30];.
Shen T, Jiang J, Lin W, Ge J, Wu P, Zhou Y et al. Use of Overlapping Group LASSO Sparse Deep Belief Network to Discriminate Parkinson’s Disease and Normal Control. Front Neurosci [Internet]. Frontiers; 2019 [cited 2025 Apr 30];13. https://doi.org/10.3389/fnins.2019.00396.
Peng J-J, Zhang Y-Y, Li R-F, Zhu W-J, Liu H-R, Li H-Y, et al. Hybrid approach for drug-target interaction predictions in ischemic stroke models. Artif Intell Med [Internet]. 2025;161:103067. https://doi.org/10.1016/j.artmed.2025.103067. [cited 2025 Apr 30];.
Gu X, Fan Z, Lu L, Xu H, He L, Shen H et al. Machine learning-assisted washing-free detection of extracellular vesicles by target recycling amplification based fluorescent aptasensor for accurate diagnosis of gastric cancer. Talanta [Internet]. 2025 [cited 2025 Apr 30];287:127506. https://doi.org/10.1016/j.talanta.2024.127506.
Kato C, Ueda K, Morimoto S, Takahashi S, Nakamura S, Ozawa F, et al. Proteomic insights into extracellular vesicles in ALS for therapeutic potential of ropinirole and biomarker discovery. Inflamm Regen [Internet]. 2024;44:32. https://doi.org/10.1186/s41232-024-00346-1. [cited 2025 Apr 30];.
Sun Y, Chen EW, Thomas J, Liu Y, Tu H, Boppart SA. K-means clustering of coherent Raman spectra from extracellular vesicles visualized by label-free multiphoton imaging. Opt Lett [Internet]. 2020;45:3613–6. https://doi.org/10.1364/OL.395838. [cited 2025 Apr 30];.
Vallejo MC, Sarkar S, Elliott EC, Henry HR, Powell SM, Diaz Ludovico I, et al. A proteomic meta-analysis refinement of plasma extracellular vesicles. Sci Data [Internet] Nat Publishing Group. 2023;10:837. https://doi.org/10.1038/s41597-023-02748-1. [cited 2025 Apr 30];.
Yang J. Insight into the potential of algorithms using AI technology as in vitro diagnostics utilizing microbial extracellular vesicles. Mol Cell Probes [Internet]. 2024;78:101992. https://doi.org/10.1016/j.mcp.2024.101992. [cited 2025 Apr 30];.
Zhou P, Shen J, Ge X, Ding F, Zhang H, Huang X, et al. Classification and characterisation of extracellular vesicles-related tuberculosis subgroups and immune cell profiles. J Cell Mol Med [Internet]. 2023;27:2482–94. https://doi.org/10.1111/jcmm.17836. [cited 2025 Apr 30];.
Čuperlović-Culf M, Khieu NH, Surendra A, Hewitt M, Charlebois C, Sandhu JK. Analysis and Simulation of Glioblastoma Cell Lines-Derived Extracellular Vesicles Metabolome. Metabolites [Internet]. 2020 [cited 2025 Apr 30];10:88. https://doi.org/10.3390/metabo10030088.
Murillo OD, Thistlethwaite W, Rozowsky J, Subramanian SL, Lucero R, Shah N et al. exRNA Atlas Analysis Reveals Distinct Extracellular RNA Cargo Types and Their Carriers Present across Human Biofluids. Cell [Internet]. 2019 [cited 2025 Apr 30];177:463–477.e15. https://doi.org/10.1016/j.cell.2019.02.018.
Zirak B, Naghipourfar M, Saberi A, Pouyabahar D, Zarezadeh A, Luo L, et al. Revealing the grammar of small RNA secretion using interpretable machine learning. Cell Genomics [Internet]. 2024;4:100522. https://doi.org/10.1016/j.xgen.2024.100522. [cited 2025 Apr 30];.
Morganti D, Rizzo MG, Spata MO, Guglielmino S, Fazio B, Battiato S, et al. Temporal convolutional network on Raman shift for human osteoblast cells fingerprint analysis. Intell-Based Med [Internet]. 2024;10:100183. https://doi.org/10.1016/j.ibmed.2024.100183. [cited 2025 Apr 30];.
Jakobsen KR, Paulsen BS, Bæk R, Varming K, Sorensen BS, Jørgensen MM. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J Extracell Vesicles. 2015;4:26659. https://doi.org/10.3402/jev.v4.26659.
Ras-Carmona A, Gomez-Perosanz M, Reche PA. Prediction of unconventional protein secretion by exosomes. BMC Bioinf [Internet]. 2021;22:333. https://doi.org/10.1186/s12859-021-04219-z. [cited 2025 Apr 30];.
Yagin FH, Alkhateeb A, Colak C, Azzeh M, Yagin B, Rueda LA, Fecal-Microbial. -Extracellular-Vesicles-Based Metabolomics Machine Learning Framework and Biomarker Discovery for Predicting Colorectal Cancer Patients. Metabolites [Internet]. Multidisciplinary Digital Publishing Institute; 2023 [cited 2025 Apr 30];13:589. https://doi.org/10.3390/metabo13050589.
Uthamacumaran A, Elouatik S, Abdouh M, Berteau-Rainville M, Gao Z, Arena G. Machine learning characterization of cancer patients-derived extracellular vesicles using vibrational spectroscopies: results from a pilot study. Appl Intell [Internet]. 2022;52:12737–53. https://doi.org/10.1007/s10489-022-03203-1. [cited 2025 Apr 30];.
Cooper TT, Dieters-Castator DZ, Liu J, Siegers GM, Pink D, Veliz L, et al. Targeted proteomics of plasma extracellular vesicles uncovers MUC1 as combinatorial biomarker for the early detection of high-grade serous ovarian cancer. J Ovarian Res [Internet]. 2024;17:149. https://doi.org/10.1186/s13048-024-01471-8. [cited 2025 Apr 30];.
Hashemi A, Ezati M, Nasr MP, Zumberg I, Provaznik V. Extracellular Vesicles and Hydrogels: An Innovative Approach to Tissue Regeneration. ACS Omega [Internet]. American Chemical Society; 2024 [cited 2025 Apr 30];9:6184–218. https://doi.org/10.1021/acsomega.3c08280.
Veerman RE, Akpinar GG, Offens A, Steiner L, Larssen P, Lundqvist A, et al. Antigen-Loaded extracellular vesicles induce responsiveness to Anti–PD-1 and Anti–PD-L1 treatment in a checkpoint refractory melanoma model. Cancer Immunol Res [Internet]. 2023;11:217–27. https://doi.org/10.1158/2326-6066.CIR-22-0540. [cited 2025 Apr 30];.
Taylor ML, Alle M, Wilson R, Rodriguez-Nieves A, Lutey MA, Slavney WF et al. Single Vesicle Surface Protein Profiling and Machine Learning-Based Dual Image Analysis for Breast Cancer Detection. Nanomaterials [Internet]. 2024 [cited 2025 Apr 30];14:1739. https://doi.org/10.3390/nano14211739.
Hinestrosa JP, Sears RC, Dhani H, Lewis JM, Schroeder G, Balcer HI, et al. Development of a blood-based extracellular vesicle classifier for detection of early-stage pancreatic ductal adenocarcinoma. Commun Med [Internet] Nat Publishing Group. 2023;3:1–9. https://doi.org/10.1038/s43856-023-00351-4. [cited 2025 Apr 30];.
Gyawali R, Dhakal A, Wang L, Cheng J. Accurate cryo-EM protein particle picking by integrating the foundational AI image segmentation model and specialized U-Net. BioRxiv Prepr Serv Biol. 2024. https://doi.org/10.1101/2023.10.02.560572. 2023.10.02.560572.
Zhang F, Yu S, Wu L, Zang Z, Yi X, Zhu J, et al. American Society for Mass Spectrometry. Published by the American Chemical Society. All rights reserved. 2020;31:2296–304. https://doi.org/10.1021/jasms.0c00254. Phenotype Classification using Proteome Data in a Data-Independent Acquisition Tensor Format. J Am Soc Mass Spectrom.
Kowkabany G, Bao Y. Nanoparticle tracking analysis: an effective tool to characterize extracellular vesicles. Molecules Multidisciplinary Digit Publishing Inst. 2024;29:4672. https://doi.org/10.3390/molecules29194672.
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen Y-L, et al. Single extracellular vesicle imaging and computational analysis identifies inherent architectural heterogeneity. BioRxiv Prepr Serv Biol. 2023. https://doi.org/10.1101/2023.12.11.571132. 2023.12.11.571132.
Yang J, Li F-Z, Arnold FH, Opportunities, and Challenges for Machine Learning-Assisted Enzyme Engineering. ACS Cent Sci [Internet]. American Chemical Society; 2024 [cited 2025 Apr 11];10:226–41. https://doi.org/10.1021/acscentsci.3c01275.
Bi Y, Wang L, Li C, Shan Z, Bi L. Unveiling exosomal biomarkers in neurodegenerative diseases: LC-MS-based profiling. Extracell Vesicle [Internet]. 2025 [cited 2025 Apr 11];5:100071. https://doi.org/10.1016/j.vesic.2025.100071.
Hamed MA, Wasinger V, Wang Q, Graham P, Malouf D, Bucci J, et al. Prostate cancer-derived extracellular vesicles metabolic biomarkers: emerging roles for diagnosis and prognosis. J Controlled Release [Internet]. 2024;371:126–45. https://doi.org/10.1016/j.jconrel.2024.05.029. [cited 2025 Apr 11];.
Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D et al. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes [Internet]. 2022 [cited 2025 Apr 11];10:12. https://doi.org/10.3390/proteomes10020012.
Zhang J-T, Qin H, Cheung FKM, Su J, Zhang D-D, Liu S-Y, et al. Plasma extracellular vesicle MicroRNAs for pulmonary ground-glass nodules. J Extracell Vesicles [Internet]. 2019;8:1663666. https://doi.org/10.1080/20013078.2019.1663666. [cited 2025 Apr 11];.
Fairey A, Paproski RJ, Pink D, Sosnowski DL, Vasquez C, Donnelly B, et al. Clinical analysis of EV-Fingerprint to predict grade group 3 and above prostate cancer and avoid prostate biopsy. Cancer Med [Internet]. 2023;12:15797–808. https://doi.org/10.1002/cam4.6216. [cited 2025 Apr 11];.
He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. IEEE Computer Society; 2016 [cited 2025 Apr 10]. pp. 770–8. https://doi.org/10.1109/CVPR.2016.90.
Musib L, Coletti R, Lopes MB, Mouriño H, Carrasquinha E. Priority-Elastic net for binary disease outcome prediction based on multi-omics data. BioData Min [Internet]. 2024 [cited 2025 Apr 10];17:45. https://doi.org/10.1186/s13040-024-00401-0.
Wei D, Zhang H, Li M, Chu L. A novel strategy for biomarker discovery: neutral loss-dependent acquisition of Circulating extracellular vesicles for the detection of phosphopeptides. Talanta Open [Internet]. 2025;11:100399. https://doi.org/10.1016/j.talo.2025.100399. [cited 2025 Apr 12];.
Burrello J, Burrello A, Vacchi E, Bianco G, Caporali E, Amongero M, et al. Supervised and unsupervised learning to define the cardiovascular risk of patients according to an extracellular vesicle molecular signature. Transl Res [Internet]. 2022;244:114–25. https://doi.org/10.1016/j.trsl.2022.02.005. [cited 2025 Apr 29];.
Kim MW, Park S, Lee H, Gwak H, Hyun K, Kim JY, et al. Multi-miRNA panel of tumor‐derived extracellular vesicles as promising diagnostic biomarkers of early‐stage breast cancer. Cancer Sci [Internet]. 2021;112:5078–87. https://doi.org/10.1111/cas.15155. [cited 2025 Apr 12];.
Hoshino A, Kim HS, Bojmar L, Gyan KE, Cioffi M, Hernandez J et al. Extracellular Vesicle and Particle Biomarkers Define Multiple Human Cancers. Cell [Internet]. 2020 [cited 2025 Apr 12];182:1044–1061.e18. https://doi.org/10.1016/j.cell.2020.07.009.
Min L, Zhu S, Chen L, Liu X, Wei R, Zhao L et al. Evaluation of Circulating small extracellular vesicles derived MiRNAs as biomarkers of early colon cancer: a comparison with plasma total MiRNAs. J Extracell Vesicles [Internet]. 2019 [cited 2025 Apr 9];8:1643670. https://doi.org/10.1080/20013078.2019.1643670.
Yang Z, LaRiviere MJ, Ko J, Till JE, Christensen T, Yee SS, et al. A multianalyte panel consisting of extracellular vesicle MiRNAs and mRNAs, cfDNA, and CA19-9 shows utility for diagnosis and staging of pancreatic ductal adenocarcinoma. Clin Cancer Res [Internet]. 2020;26:3248–58. https://doi.org/10.1158/1078-0432.CCR-19-3313. [cited 2025 Apr 12];.
Babu M, Snyder M. Multi-Omics profiling for health. Mol Cell Proteomics [Internet]. 2023 [cited 2025 Apr 12];22:100561. https://doi.org/10.1016/j.mcpro.2023.100561.
Wu Y, Xie L. AI-driven multi-omics integration for multi-scale predictive modeling of genotype-environment-phenotype relationships. Comput Struct Biotechnol J [Internet]. 2025;27:265–77. https://doi.org/10.1016/j.csbj.2024.12.030. [cited 2025 Apr 12];.
Szatanek R, Baj-Krzyworzeka M, Zimoch J, Lekka M, Siedlar M, Baran J. The methods of choice for extracellular vesicles (EVs) characterization. Int J Mol Sci [Internet]. 2017;18:1153. https://doi.org/10.3390/ijms18061153. [cited 2025 Apr 12];. Multidisciplinary Digital Publishing Institute.
Jones DE, Ghandehari H, Facelli JC. A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Comput Methods Programs Biomed [Internet]. 2016 [cited 2025 Apr 29];132:93–103. https://doi.org/10.1016/j.cmpb.2016.04.025.
Schimek N, Wood TR, Beck DAC, McKenna M, Toghani A, Nance E. High-fidelity predictions of diffusion in the brain microenvironment. Biophys J [Internet]. 2024;123:3935–50. https://doi.org/10.1016/j.bpj.2024.10.005. [cited 2025 Apr 29];.
Ali Moussa HY, Shin KC, de la Fuente A, Bensmail I, Abdesselem HB, Ponraj J, et al. Proteomics analysis of extracellular vesicles for biomarkers of autism spectrum disorder. Front Mol Biosci [Internet]. 2024;11:1467398. https://doi.org/10.3389/fmolb.2024.1467398. [cited 2025 Apr 12];.
Li Y, Fu B, Wang M, Chen W, Fan J, Li Y, et al. Urinary extracellular vesicle N-glycomics identifies diagnostic glycosignatures for bladder cancer. Nat Commun [Internet] Nat Publishing Group. 2025;16:2292. https://doi.org/10.1038/s41467-025-57633-9. [cited 2025 Apr 12];.
Pu X, Zhang C, Ding G, Gu H, Lv Y, Shen T et al. Diagnostic plasma small extracellular vesicles MiRNA signatures for pancreatic cancer using machine learning methods. Transl Oncol [Internet]. 2024 [cited 2025 Apr 12];40:101847. https://doi.org/10.1016/j.tranon.2023.101847.
Min Y, Deng W, Yuan H, Zhu D, Zhao R, Zhang P, et al. Single extracellular vesicle surface protein-based blood assay identifies potential biomarkers for detection and screening of five cancers. Mol Oncol [Internet]. 2024;18:743–61. https://doi.org/10.1002/1878-0261.13586. [cited 2025 Apr 12];.
Grätz C, Schuster M, Brandes F, Meidert AS, Kirchner B, Reithmair M, et al. A pipeline for the development and analysis of extracellular vesicle-based transcriptomic biomarkers in molecular diagnostics. Mol Aspects Med [Internet]. 2024;97:101269. https://doi.org/10.1016/j.mam.2024.101269. [cited 2025 Apr 12];.
Lees R, Tempest R, Law A, Aubert D, Davies OG, Williams S et al. Single extracellular vesicle transmembrane protein characterization by Nano-Flow cytometry. J Vis Exp JoVE [Internet]. 2022 [cited 2025 Apr 29];e64020. https://doi.org/10.3791/64020.
Spies NC, Rangel A, English P, Morrison M, O’Fallon B, Ng DP. Machine learning methods in clinical flow Cytometry. Cancers [Internet]. Multidisciplinary Digital Publishing Institute; 2025 [cited 2025 Apr 29];17:483. https://doi.org/10.3390/cancers17030483.
Salmond N, Khanna K, Owen GR, Williams KC. Nanoscale flow cytometry for immunophenotyping and quantitating extracellular vesicles in blood plasma. Nanoscale [Internet]. Volume 13. The Royal Society of Chemistry; 2021. pp. 2012–25. [cited 2025 Apr 12];. https://doi.org/10.1039/D0NR05525E.
Morakis D, Adamopoulos A. Hybrid Machine Learning Algorithms to Evaluate Prostate Cancer. Algorithms [Internet]. Multidisciplinary Digital Publishing Institute; 2024 [cited 2025 Apr 12];17:236. https://doi.org/10.3390/a17060236.
Belkina AC, Ciccolella CO, Anno R, Halpert R, Spidlen J, Snyder-Cappione JE. Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets. Nat Commun [Internet]. 2019;10:5415. https://doi.org/10.1038/s41467-019-13055-y. [cited 2025 Apr 29];.
Iqbal F, Lupieri A, Aikawa M, Aikawa E, Harnessing Single-Cell RNA. Sequencing to Better Understand How Diseased Cells Behave the Way They Do in Cardiovascular Disease. Arterioscler Thromb Vasc Biol [Internet]. American Heart Association; 2021 [cited 2025 Apr 29];41:585–600. https://doi.org/10.1161/ATVBAHA.120.314776.
Libregts SFWM, Arkesteijn GJA, Németh A, Nolte-’t Hoen ENM, Wauben MHM. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non-interest. J Thromb Haemost JTH. 2018;16:1423–36. https://doi.org/10.1111/jth.14154.
Oesterreicher J, Pultar M, Schneider J, Mühleder S, Zipperle J, Grillari J et al. Fluorescence-Based nanoparticle tracking analysis and flow cytometry for characterization of endothelial extracellular vesicle release. Int J Mol Sci [Internet]. 2020 [cited 2025 Apr 29];21:9278. https://doi.org/10.3390/ijms21239278.
Gul B, Syed F, Khan S, Iqbal A, Ahmad I. Characterization of extracellular vesicles by flow cytometry: challenges and promises. Micron [Internet]. 2022 [cited 2025 Apr 29];161:103341. https://doi.org/10.1016/j.micron.2022.103341.
Dhoble AS, Lahiri P, Bhalerao KD. Machine learning analysis of microbial flow cytometry data from nanoparticles, antibiotics and carbon sources perturbed anaerobic microbiomes. J Biol Eng [Internet]. 2018;12:19. https://doi.org/10.1186/s13036-018-0112-9. [cited 2025 Apr 29];.
Montante S, Brinkman RR. Flow cytometry data analysis: Recent tools and algorithms. Volume 41. Wiley, Ltd;; 2019. pp. 56–62. [cited 2025 Apr 29];. https://doi.org/10.1111/ijlh.13016. Int J Lab Hematol [Internet].
A simplified. And efficient extracellular vesicle-based proteomics strategy for early diagnosis of colorectal cancer. Chem Sci [Internet]. 2024;15:18419–30. https://doi.org/10.1039/d4sc05518g. [cited 2025 Nov 30];.
Yang Z, Tian T, Kong J, Chen H, ChatExosome. An artificial intelligence (AI) agent based on deep learning of exosomes spectroscopy for hepatocellular carcinoma (HCC) Diagnosis. Anal chem [Internet]. Volume 97. American Chemical Society; 2025. pp. 4643–52. [cited 2025 Nov 30];. https://doi.org/10.1021/acs.analchem.4c06677.
Liu H-S, Ye K-W, Liu J, Jiang J-K, Jian Y-F, Chen D-M, et al. Lung cancer diagnosis through extracellular vesicle analysis using label-free surface-enhanced Raman spectroscopy coupled with machine learning. Theranostics [Internet] Ivyspring Int Publisher. 2025;15:7545–66. https://doi.org/10.7150/thno.110178. [cited 2025 Dec 1];.
Shin H, Choi BH, Shim O, Kim J, Park Y, Cho SK, et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers. Nat Commun [Internet] Nat Publishing Group. 2023;14:1644. https://doi.org/10.1038/s41467-023-37403-1. [cited 2025 Dec 1];.
Li B, Kugeratski FG, Kalluri R. A novel machine learning algorithm selects proteome signature to specifically identify cancer exosomes. In: Karimi MM, Ng T, editors. eLife [Internet]. Volume 12. eLife Sciences Publications, Ltd; 2024. p. RP90390. [cited 2025 Dec 1];. https://doi.org/10.7554/eLife.90390.
Zhang X-W, Qi G-X, Liu M-X, Yang Y-F, Wang J-H, Yu Y-L, et al. Deep learning promotes profiling of multiple MiRNAs in single extracellular vesicles for cancer Diagnosis. ACS Sens [Internet]. Volume 9. American Chemical Society; 2024. pp. 1555–64. [cited 2025 Dec 1];. https://doi.org/10.1021/acssensors.3c02789.
Tian F, Zhang S, Liu C, Han Z, Liu Y, Deng J, et al. Protein analysis of extracellular vesicles to monitor and predict therapeutic response in metastatic breast cancer. Nat Commun [Internet] Nat Publishing Group. 2021;12:2536. https://doi.org/10.1038/s41467-021-22913-7. [cited 2025 Dec 1];.
Diao X, Qi G, Li X, Tian Y, Li J, Jin Y, Label-Free Exosomal. SERS Detection Assisted by Machine Learning for Accurately Discriminating Cell Cycle Stages and Revealing the Molecular Mechanisms during the Mitotic Process. Anal Chem [Internet]. American Chemical Society; 2025 [cited 2025 Dec 1];97:5093–101. https://doi.org/10.1021/acs.analchem.4c06240.
Chiabotto G, Dumontel B, Zilli L, Vighetto V, Savino G, Alfieri F, et al. A Deep Learning Approach for Tracking Colorectal Cancer-Derived Extracellular Vesicles in Colon and Lung Models. Volume 11. American Chemical Society; 2025. pp. 5343–55. [cited 2025 Dec 1];. https://doi.org/10.1021/acsbiomaterials.5c00380. ACS Biomater Sci Eng [Internet].
Kapoor KS, Kong S, Sugimoto H, Guo W, Boominathan V, Chen Y-L, et al. Single extracellular vesicle imaging and computational analysis identifies inherent architectural heterogeneity. ACS Nano [Internet]. 2024;18:11717–31. https://doi.org/10.1021/acsnano.3c12556. [cited 2025 Dec 1];.
Lorite P, Domínguez JN, Palomeque T, Torres MI. Extracellular vesicles: advanced tools for disease Diagnosis, Monitoring, and therapies. Int J Mol Sci [Internet]. 2025;26:189. https://doi.org/10.3390/ijms26010189. [cited 2025 Apr 29];. Multidisciplinary Digital Publishing Institute.
Gurjar S, Bhat AR, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis [Internet]. 2025;24:5. https://doi.org/10.1186/s12944-024-02396-3. [cited 2025 Apr 29];.
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, et al. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnol [Internet]. 2023;21:366. https://doi.org/10.1186/s12951-023-02127-3. [cited 2025 Apr 29];.
Cui L, Zheng J, Lu Y, Lin P, Lin Y, Zheng Y, et al. New frontiers in salivary extracellular vesicles: transforming diagnostics, monitoring, and therapeutics in oral and systemic diseases. J Nanobiotechnol [Internet]. 2024;22:171. https://doi.org/10.1186/s12951-024-02443-2. [cited 2025 Apr 29];.
Yu J, Liu X, Jin L, Li H, Wang S, Yang Y, et al. Extracellular vesicles derived from menstrual blood-derived mesenchymal stem cells suppress inflammatory atherosclerosis by inhibiting NF-κB signaling. BMC Med [Internet]. 2025;23:565. https://doi.org/10.1186/s12916-025-04390-7. [cited 2025 Nov 30];.
Chen Y, Douanne N, Wu T, Kaur I, Tsering T, Erzingatzian A, et al. Leveraging nature’s nanocarriers: translating insights from extracellular vesicles to biomimetic synthetic vesicles for biomedical applications. Sci adv [Internet]. Volume 11. American Association for the Advancement of Science; 2025. p. eads5249. [cited 2025 Apr 29];. https://doi.org/10.1126/sciadv.ads5249.
Yokoi A, Ochiya T. Exosomes and extracellular vesicles: rethinking the essential values in cancer biology. Semin Cancer Biol [Internet]. 2021;74:79–91. https://doi.org/10.1016/j.semcancer.2021.03.032. [cited 2025 Apr 29];.
Miceli RT, Chen T-Y, Nose Y, Tichkule S, Brown B, Fullard JF, et al. Extracellular vesicles, RNA sequencing, and bioinformatic analyses: Challenges, solutions, and recommendations. J Extracell Vesicles [Internet]. 2024;13:e70005. https://doi.org/10.1002/jev2.70005. [cited 2025 Apr 29];.
Chandra V, Tiwari A, Singh RP, Desai KV. Therapeutic intervention of signaling pathways in colorectal cancer. In: Shukla D, Vishvakarma NK, Nagaraju GP, editors. Colon cancer diagn ther vol 3 [Internet]. Cham: Springer International Publishing; 2022. pp. 143–71. [cited 2024 May 20]. https://doi.org/10.1007/978-3-030-72702-4_8.
Bayo Calero J, Castaño López MA, Casado Monge PG, Díaz Portillo J, Bejarano García A, Navarro Roldán F. Analysis of blood markers for early colorectal cancer diagnosis. J Gastrointest Oncol [Internet]. 2022;13:2259–68. https://doi.org/10.21037/jgo-21-747. [cited 2025 Apr 29];.
Li C, Zhang W, Chen Q, Xiao F, Yang X, Xiao B, et al. Development and validation of a logistic regression model for the diagnosis of colorectal cancer. Sci Rep [Internet] Nat Publishing Group. 2025;15:14759. https://doi.org/10.1038/s41598-025-98968-z. [cited 2025 Apr 29];.
Zhang Z, Liu X, Peng C, Du R, Hong X, Xu J, et al. Machine Learning-Aided identification of fecal extracellular vesicle MicroRNA signatures for noninvasive detection of colorectal cancer. ACS Nano. 2025;19:10013–25. https://doi.org/10.1021/acsnano.4c16698.
Li C, Zhao K, Zhang D, Pang X, Pu H, Lei M, et al. Prediction models of colorectal cancer prognosis incorporating perioperative longitudinal serum tumor markers: a retrospective longitudinal cohort study. BMC Med [Internet]. 2023;21:63. https://doi.org/10.1186/s12916-023-02773-2. [cited 2025 May 2];.
Mannucci A, Goel A. Stool and blood biomarkers for colorectal cancer management: an update on screening and disease monitoring. Mol Cancer [Internet]. 2024;23:259. https://doi.org/10.1186/s12943-024-02174-w. [cited 2025 Apr 29];.
Shi W, Xu J, Zhu Y, Zhang C, Nagelschmitz J, Doelling M et al. Multiethnic radiogenomics reveals low-abundancy MicroRNA signature in plasma-derived extracellular vesicles for early diagnosis and subtyping of pancreatic cancer. eLife [Internet]. eLife Sciences Publications Limited; 2025 [cited 2025 May 2];14. https://doi.org/10.7554/eLife.103737.1.
Putthanbut N, Lee JY, Borlongan CV. Extracellular vesicle therapy in neurological disorders. J Biomed Sci [Internet]. 2024. https://doi.org/10.1186/s12929-024-01075-w. [cited 2025 Apr 29];31:85.
O’Toole HJ, Lowe NM, Arun V, Kolesov AV, Palmieri TL, Tran NK, et al. Plasma-derived extracellular vesicles (EVs) as biomarkers of sepsis in burn patients via label-free Raman spectroscopy. J Extracell Vesicles. 2024;13:e12506. https://doi.org/10.1002/jev2.12506.
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat Protoc [Internet]. Nat Publishing Group. 2019;14:2986–3012. https://doi.org/10.1038/s41596-019-0210-2. [cited 2025 May 2];.
Kumaran A, Jude Serpes N, Gupta T, James A, Sharma A, Kumar D, et al. Advancements in CRISPR-Based biosensing for Next-Gen point of care diagnostic Application. Biosensors [Internet]. Volume 13. Multidisciplinary Digital Publishing Institute; 2023. p. 202. [cited 2025 May 2];. https://doi.org/10.3390/bios13020202.
Bhaiyya M, Panigrahi D, Rewatkar P, Haick H. Role of machine learning assisted biosensors in Point-of-Care-Testing for clinical decisions. ACS Sens. 2024;9:4495–519. https://doi.org/10.1021/acssensors.4c01582.
Nouri M, Nasiri F, Sharif S, Abbaszadegan MR. Unraveling extracellular vesicle DNA: Biogenesis, functions, and clinical implications. Pathol - Res Pract [Internet]. 2025;269:155937. https://doi.org/10.1016/j.prp.2025.155937. [cited 2025 May 2];.
Teng F, Fussenegger M. Shedding light on extracellular vesicle biogenesis and Bioengineering. Adv sci [Internet]. 2020 [cited 2025 Apr 29];8:2003505. https://doi.org/10.1002/advs.202003505.
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci [Internet]. Proceedings of the National Academy of Sciences; 2016 [cited 2025 May 2];113:E968–77. https://doi.org/10.1073/pnas.1521230113.
Kim D-K, Kang B, Kim OY, Choi D-S, Lee J, Kim SR, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles. 2013;2. https://doi.org/10.3402/jev.v2i0.20384.
Spitzberg JD, Ferguson S, Yang KS, Peterson HM, Carlson JCT, Weissleder R. Multiplexed analysis of EV reveals specific biomarker composition with diagnostic impact. Nat Commun [Internet] Nat Publishing Group. 2023;14:1239. https://doi.org/10.1038/s41467-023-36932-z. [cited 2025 May 2];.
Mateescu B, Kowal EJK, van Balkom BWM, Bartel S, Bhattacharyya SN, Buzás EI, et al. Obstacles and opportunities in the functional analysis of extracellular vesicle RNA - an ISEV position paper. J Extracell Vesicles. 2017;6:1286095. https://doi.org/10.1080/20013078.2017.1286095.
Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, et al. Sumoylated hnRNPA2B1 controls the sorting of MiRNAs into exosomes through binding to specific motifs. Nat Commun [Internet] Nat Publishing Group. 2013;4:2980. https://doi.org/10.1038/ncomms3980. [cited 2025 May 2];.
Shurtleff MJ, Temoche-Diaz MM, Karfilis KV, Ri S, Schekman R. Y-box protein 1 is required to sort MicroRNAs into exosomes in cells and in a cell-free reaction. eLife. 2016;5:e19276. https://doi.org/10.7554/eLife.19276.
Yap JYY, Goh LSH, Lim AJW, Chong SS, Lim LJ, Lee CG. Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma. Cancers [Internet]. 2023 [cited 2025 May 2];15:3749. https://doi.org/10.3390/cancers15143749.
Zhu K, Tao Q, Yan J, Lang Z, Li X, Li Y, et al. Machine learning identifies exosome features related to hepatocellular carcinoma. Front Cell Dev Biol [Internet]. 2022;10:1020415. https://doi.org/10.3389/fcell.2022.1020415. [cited 2025 May 2];.
Okeoma CM, Naushad W, Okeoma BC, Gartner C, Santos-Ortega Y, Vary C et al. Lipidomic and Proteomic Insights from Extracellular Vesicles in Postmortem Dorsolateral Prefrontal Cortex Reveal Substance Use Disorder-Induced Brain Changes [Internet]. bioRxiv; 2024 [cited 2025 May 2]. p. 2024.08.09.607388. https://doi.org/10.1101/2024.08.09.607388.
Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D, et al. Multi-Omics integrative approach of extracellular vesicles: A future challenging milestone. Proteomes. 2022;10:12. https://doi.org/10.3390/proteomes10020012.
Nijhuis A, Thompson H, Adam J, Parker A, Gammon L, Lewis A, et al. Remodelling of MicroRNAs in colorectal cancer by hypoxia alters metabolism profiles and 5-fluorouracil resistance. Hum Mol Genet [Internet]. 2017;26:1552–64. https://doi.org/10.1093/hmg/ddx059. [cited 2025 May 2];.
Ljungström M, Oltra E. Methods for extracellular vesicle isolation: relevance for encapsulated MiRNAs in disease diagnosis and Treatment. Genes [Internet]. Multidisciplinary Digital Publishing Institute; 2025 [cited 2025 May 2];16:330. https://doi.org/10.3390/genes16030330.
Sidhom K, Obi PO, Saleem A. A review of Exosomal isolation methods: is size exclusion chromatography the best option? Int J Mol Sci [Internet]. 2020;21:6466. https://doi.org/10.3390/ijms21186466. [cited 2025 May 2];.
Benayas B, Morales J, Egea C, Armisén P, Yáñez-Mó M. Optimization of extracellular vesicle isolation and their separation from lipoproteins by size exclusion chromatography. J Extracell Biol [Internet]. 2023;2:e100. https://doi.org/10.1002/jex2.100. [cited 2025 May 2];.
Chou C-Y, Chiang P-C, Li C-C, Chang J-W, Lu P-H, Hsu W-F et al. Improving the Purity of Extracellular Vesicles by Removal of Lipoproteins from Size Exclusion Chromatography- and Ultracentrifugation-Processed Samples Using Glycosaminoglycan-Functionalized Magnetic Beads. ACS Appl Mater Interfaces [Internet]. American Chemical Society; 2024 [cited 2025 May 2];16:44386–98. https://doi.org/10.1021/acsami.4c03869.
Paget D, Checa A, Zöhrer B, Heilig R, Shanmuganathan M, Dhaliwal R et al. Comparative and Integrated Analysis of Plasma Extracellular Vesicles Isolations Methods in Healthy Volunteers and Patients Following Myocardial Infarction [Internet]. medRxiv; 2022 [cited 2025 May 2]. p. 2022.04.12.22273619. https://doi.org/10.1101/2022.04.12.22273619.
Poupardin R, Wolf M, Maeding N, Paniushkina L, Geissler S, Bergese P et al. Advances in extracellular vesicle research over the past decade: source and isolation method are connected with cargo and function. Adv Healthc Mater [Internet]. 2024 [cited 2025 May 2];13:2303941. https://doi.org/10.1002/adhm.202303941.
Waury K, Gogishvili D, Nieuwland R, Chatterjee M, Teunissen CE, Abeln S. Proteome encoded determinants of protein sorting into extracellular vesicles. J Extracell Biol [Internet]. 2024;3:e120. https://doi.org/10.1002/jex2.120. [cited 2025 May 2];.
Geng T, Ding L, Liu M, Zou X, Gu Z, Lin H, et al. Preservation of extracellular vesicles for drug delivery: A comparative evaluation of storage buffers. J Drug Deliv Sci Technol [Internet]. 2025;107:106850. https://doi.org/10.1016/j.jddst.2025.106850. [cited 2025 Nov 30];.
Paproski RJ, Pink D, Sosnowski DL, Vasquez C, Lewis JD. Building predictive disease models using extracellular vesicle microscale flow cytometry and machine learning. Mol Oncol. 2022;17:407–21. https://doi.org/10.1002/1878-0261.13362.
Mienye ID, Swart TG, Obaido G. Recurrent neural networks: A comprehensive review of Architectures, Variants, and applications. Inform Multidisciplinary Digit Publishing Inst. 2024;15:517. https://doi.org/10.3390/info15090517.
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750. https://doi.org/10.1080/20013078.2018.1535750.
Ja W, Dci G, Ei LO. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles [Internet] J. 2024. https://doi.org/10.1002/jev2.12404. [cited 2025 May 2];13. Extracell Vesicles.
Me VG-B, Hm GDP, A B-M G. The times they are AI-changing: AI-powered advances in the application of extracellular vesicles to liquid biopsy in breast cancer. Extracell vesicles circ nucleic acids [Internet]. Extracell Vesicles Circ Nucl Acids; 2025 [cited 2025 May 2];6. https://doi.org/10.20517/evcna.2024.51.
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, et al. Extracellular vesicle Preparation and analysis: A State-of-the-Art review. Adv Sci. 2024;11:2401069. https://doi.org/10.1002/advs.202401069.
Lu X, Fan S, Cao M, Liu D, Xuan K, Liu A. Extracellular vesicles as drug delivery systems in therapeutics: current strategies and future challenges. J Pharm Investig. 2024;54:785–802. https://doi.org/10.1007/s40005-024-00699-2.
Elsharkasy OM, Nordin JZ, Hagey DW, de Jong OG, Schiffelers RM, Andaloussi SE, et al. Extracellular vesicles as drug delivery systems: why and how? Adv Drug Deliv Rev. 2020;159:332–43. https://doi.org/10.1016/j.addr.2020.04.004.
Zeng B, Li Y, Xia J, Xiao Y, Khan N, Jiang B, et al. Micro Trojan horses: engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng Transl Med. 2024;9:e10623. https://doi.org/10.1002/btm2.10623.
Imtiaz S, Ferdous UT, Nizela A, Hasan A, Shakoor A, Zia AW, et al. Mechanistic study of cancer drug delivery: current techniques, limitations, and future prospects. Eur J Med Chem. 2025;290:117535. https://doi.org/10.1016/j.ejmech.2025.117535.
El-Tanani M, Satyam SM, Rabbani SA, El-Tanani Y, Aljabali AAA, Al Faouri I, et al. Revolutionizing drug delivery: the impact of advanced materials science and technology on precision medicine. Pharmaceutics. 2025;17:375. https://doi.org/10.3390/pharmaceutics17030375.
Liu S, Wu X, Chandra S, Lyon C, Ning B, jiang L, et al. Extracellular vesicles: emerging tools as therapeutic agent carriers. Acta Pharm Sin B [Internet]. 2022;12:3822–42. https://doi.org/10.1016/j.apsb.2022.05.002. [cited 2025 Apr 12];.
Roy D, Pascher A, Juratli MA, Sporn JC. The potential of Aptamer-Mediated liquid biopsy for early detection of cancer. Int J Mol Sci. 2021;22:5601. https://doi.org/10.3390/ijms22115601.
Wen X, Hao Z, Yin H, Min J, Wang X, Sun S, et al. Engineered extracellular vesicles as a new class of nanomedicine. Chem Bio Eng Am Chem Soc. 2025;2:3–22. https://doi.org/10.1021/cbe.4c00122.
Pei W, Zhang Y, Zhu X, Zhao C, Li X, Lü H et al. Multitargeted Immunomodulatory Therapy for Viral Myocarditis by Engineered Extracellular Vesicles. ACS Nano [Internet]. American Chemical Society; 2024 [cited 2025 Nov 27];18:2782–99. https://doi.org/10.1021/acsnano.3c05847.
Mowbray M, Savage T, Wu C, Song Z, Cho BA, Del Rio-Chanona EA, et al. Machine learning for biochemical engineering: A review. Biochem Eng J. 2021;172:108054. https://doi.org/10.1016/j.bej.2021.108054.
Ion GND, Nitulescu GM, Mihai DP. Machine Learning-Assisted drug repurposing framework for discovery of Aurora kinase B inhibitors. Pharm Basel Switz. 2024;18:13. https://doi.org/10.3390/ph18010013.
Tang S, Cheng H, Zang X, Tian J, Ling Z, Wang L, et al. Small extracellular vesicles: crucial mediators for prostate cancer. J Nanobiotechnol. 2025;23:230. https://doi.org/10.1186/s12951-025-03326-w.
Ljungström M, Oltra E. Methods for extracellular vesicle isolation: relevance for encapsulated MiRNAs in disease diagnosis and Treatment. Genes. Multidisciplinary Digit Publishing Inst. 2025;16:330. https://doi.org/10.3390/genes16030330.
Vaiaki EM, Falasca M. Comparative analysis of the minimal information for studies of extracellular vesicles guidelines: advancements and implications for extracellular vesicle research. Semin Cancer Biol. 2024;101:12–24. https://doi.org/10.1016/j.semcancer.2024.04.002.
Liu W, Ma Z, Kang X. Current status and outlook of advances in exosome isolation. Anal Bioanal Chem [Internet]. 2022 [cited 2025 Apr 10];414:7123–41. https://doi.org/10.1007/s00216-022-04253-7.
Bracht JWP, Los M, van der Pol E, Verkuijlen SAWM, van Eijndhoven MAJ, Pegtel DM, et al. Choice of size-exclusion chromatography column affects recovery, purity, and MiRNA cargo analysis of extracellular vesicles from human plasma. Extracell Vesicles Circ Nucleic Acids. 2024;5:497–508. https://doi.org/10.20517/evcna.2024.34.
Saftics A, Abuelreich S, Romano E, Ghaeli I, Jiang N, Spanos M, et al. Single extracellular vesicle nanoscopy. J Extracell Vesicles [Internet]. 2023;12:12346. https://doi.org/10.1002/jev2.12346. [cited 2025 Apr 10];.
Cvjetkovic A, Lötvall J, Lässer C. The influence of rotor type and centrifugation time on the yield and purity of extracellular vesicles. J Extracell Vesicles. 2014;3. https://doi.org/10.3402/jev.v3.23111.
Yekula A, Muralidharan K, Kang K, Wang L, Balaj L, Carter BS. From Laboratory to Clinic: Translation of Extracellular Vesicle Based Cancer Biomarkers. Methods San Diego Calif [Internet]. 2020 [cited 2025 Apr 13];177:58–66. https://doi.org/10.1016/j.ymeth.2020.02.003.
Bi Y, Wang L, Li C, Shan Z, Bi L. Unveiling Exosomal biomarkers in neurodegenerative diseases: LC-MS-based profiling. Extracell Vesicle. 2025;5:100071. https://doi.org/10.1016/j.vesic.2025.100071.
Kirsch-Stefan N, Guillen E, Ekman N, Barry S, Knippel V, Killalea S et al. Do the outcomes of clinical efficacy trials matter in regulatory Decision-Making for biosimilars? Biodrugs. 2023;37:855–71. https://doi.org/10.1007/s40259-023-00631-4.
Alzraiee AH, Niswonger RG. A probabilistic approach to training machine learning models using noisy data. Environ Model Softw. 2024;179:106133. https://doi.org/10.1016/j.envsoft.2024.106133.
Angelioudaki I, Iosif A, Kourou K, Tzingounis A-G, Kigka V, Skreka A-M, et al. A machine-learning approach for pancreatic neoplasia classification based on plasma extracellular vesicles. Front Oncol Front. 2025;15:1540195. https://doi.org/10.3389/fonc.2025.1540195.
Cheng C-A. Before translating extracellular vesicles into personalized diagnostics and therapeutics: what we could do. Mol Pharm. 2024;21:2625–36. https://doi.org/10.1021/acs.molpharmaceut.4c00185.
Phillips W, Willms E, Hill AF. Understanding extracellular vesicle and nanoparticle heterogeneity: Novel methods and considerations. Proteomics [Internet]. 2021 [cited 2025 Apr 13];21:2000118. https://doi.org/10.1002/pmic.202000118.
Rp C, Rr M, Bt B. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. Nat Nanotechnol [Internet] Nat Nanotechnol. 2025. https://doi.org/10.1038/s41565-024-01774-3. [cited 2025 Apr 13];20.
Ortega FG, Roefs MT, de Miguel Perez D, Kooijmans SA, de Jong OG, Sluijter JP, et al. Interfering with endolysosomal trafficking enhances release of bioactive exosomes. Nanomed Nanotechnol Biol Med. 2019;20:102014. https://doi.org/10.1016/j.nano.2019.102014.
Moeinzadeh L, Razeghian-Jahromi I, Zarei-Behjani Z, Bagheri Z, Razmkhah M, Composition. Biogenesis, and role of exosomes in tumor development. Stem Cells Int. 2022;2022:8392509. https://doi.org/10.1155/2022/8392509.
Kakarla R, Hur J, Kim YJ, Kim J, Chwae Y-J. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med. 2020;52:1–6. https://doi.org/10.1038/s12276-019-0362-8.
Lee YJ, Shin KJ, Chae YC. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med Nat Publishing Group. 2024;56:877–89. https://doi.org/10.1038/s12276-024-01209-y.
Matsuzaka Y, Yashiro R. Extracellular vesicles as novel Drug-Delivery systems through intracellular Communications. Membranes. Multidisciplinary Digit Publishing Inst. 2022;12:550. https://doi.org/10.3390/membranes12060550.
Meyer TA, Ramirez C, Tamasi MJ, Gormley AJ. A user’s guide to machine learning for polymeric biomaterials. ACS Polym Au Am Chem Soc. 2023;3:141–57. https://doi.org/10.1021/acspolymersau.2c00037.
Jalil SA, Haq A, Owad AA, Hashmi N, Adichwal NK. A hierarchical multi-level model for compromise allocation in multivariate stratified sample surveys with non-response problem. Knowl-Based Syst. 2023;278:110839. https://doi.org/10.1016/j.knosys.2023.110839.
Wani AA. Comprehensive analysis of clustering algorithms: exploring limitations and innovative solutions. PeerJ Comput Sci. 2024;10:e2286. https://doi.org/10.7717/peerj-cs.2286.
Athaya T, Ripan RC, Li X, Hu H. Multimodal deep learning approaches for single-cell multi-omics data integration. Brief Bioinform. 2023;24:bbad313. https://doi.org/10.1093/bib/bbad313.
Zhong Z, Xie H, Wang Z, Zhang Z. Domain adversarial transfer learning bearing fault diagnosis model incorporating structural adjustment Modules. Sensors. Multidisciplinary Digit Publishing Inst. 2025;25:1851. https://doi.org/10.3390/s25061851.
Yáñez-Mó M, Siljander PR-M, Andreu Z, Zavec AB, Borràs FE, Buzas EI, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4. https://doi.org/10.3402/jev.v4.27066.
Chen Y-F, Luh F, Ho Y-S, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci. 2024;31:67. https://doi.org/10.1186/s12929-024-01055-0.
Morales R-TT, Ko J. Future of digital assays to resolve clinical heterogeneity of single extracellular vesicles. ACS Nano. 2022;16:11619–45. https://doi.org/10.1021/acsnano.2c04337.
Zeng Y, Qiu Y, Jiang W, Shen J, Yao X, He X, et al. Biological features of extracellular vesicles and challenges. Front Cell Dev Biol. 2022;10:816698. https://doi.org/10.3389/fcell.2022.816698.
Karalis VD. The integration of artificial intelligence into clinical practice. Appl Biosci Multidisciplinary Digit Publishing Inst. 2024;3:14–44. https://doi.org/10.3390/applbiosci3010002.
de Gonzalo-Calvo D, Karaduzovic-Hadziabdic K, Dalgaard LT, Dieterich C, Perez-Pons M, Hatzigeorgiou A, et al. Machine learning for catalysing the integration of noncoding RNA in research and clinical practice. eBioMedicine. 2024;106:105247. https://doi.org/10.1016/j.ebiom.2024.105247.
Kim MW, Park S, Lee H, Gwak H, Hyun K-A, Kim JY, et al. Multi-miRNA panel of tumor-derived extracellular vesicles as promising diagnostic biomarkers of early-stage breast cancer. Cancer Sci. 2021;112:5078–87. https://doi.org/10.1111/cas.15155.
Health C, for D. and R. Artificial Intelligence and Machine Learning in Software as a Medical Device. FDA [Internet]. FDA; 2025 [cited 2025 May 3]; https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-software-medical-device. Accessed 3 May 2025.
Artificial intelligence | European Medicines Agency (EMA) [Internet]. 2024 [cited 2025 May 3]. https://www.ema.europa.eu/en/about-us/how-we-work/data-regulation-big-data-other-sources/artificial-intelligence. Accessed 3 May 2025.
Health C, for D. and R. Clinical Decision Support Software [Internet]. FDA; 2025 [cited 2025 May 3]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-decision-support-software. Accessed 3 May 2025.
Sarantopoulos A, Mastori Kourmpani C, Yokarasa AL, Makamanzi C, Antoniou P, Spernovasilis N, et al. Artificial intelligence in infectious disease clinical practice: an overview of Gaps, Opportunities, and limitations. Trop Med Infect Dis Multidisciplinary Digit Publishing Inst. 2024;9:228. https://doi.org/10.3390/tropicalmed9100228.
Kumar Y, Koul A, Singla R, Ijaz MF. Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. J Ambient Intell Humaniz Comput. 2023;14:8459–86. https://doi.org/10.1007/s12652-021-03612-z.
Yang G, Ye Q, Xia J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond. Inf Fusion. 2022;77:29–52. https://doi.org/10.1016/j.inffus.2021.07.016.
What is a trade-. off between explainability and model complexity? [Internet]. [cited 2025 May 3]. https://milvus.io/ai-quick-reference/what-is-a-tradeoff-between-explainability-and-model-complexity. Accessed 3 May 2025.
Arshad MA, Shahriar S, Anjum K. The Power Of Simplicity: Why Simple Linear Models Outperform Complex Machine Learning Techniques -- Case Of Breast Cancer Diagnosis [Internet]. arXiv; 2023 [cited 2025 May 3]. https://doi.org/10.48550/arXiv.2306.02449.
Ou F-S, Michiels S, Shyr Y, Adjei AA, Oberg AL. Biomarker discovery and validation: statistical considerations. J Thorac Oncol Off Publ Int Assoc Study Lung Cancer. 2021;16:537–45. https://doi.org/10.1016/j.jtho.2021.01.1616.
Muhammad D, Bendechache M. Unveiling the black box: A systematic review of explainable artificial intelligence in medical image analysis. Comput Struct Biotechnol J. 2024;24:542–60. https://doi.org/10.1016/j.csbj.2024.08.005.
Li Y, Yao X, Padman R. No Black Box Anymore: Demystifying Clinical Predictive Modeling with Temporal-Feature Cross Attention Mechanism [Internet]. arXiv; 2025 [cited 2025 Nov 30]. https://doi.org/10.48550/arXiv.2503.19285.
Droste M, Puhka M, van Royen ME, Ng MSY, Blijdorp C, Alvarez-Llamas G et al. Roadblocks of urinary EV biomarkers: moving toward the clinic. J Extracell Vesicles [Internet]. 2025 [cited 2025 Nov 30];14:e70120. https://doi.org/10.1002/jev2.70120.
Dukda S, Kumar M, Calcino A, Schmitz U, Field MA. Increasing pathogenic germline variant diagnosis rates in precision medicine: current best practices and future opportunities. Hum Genomics [Internet]. 2025;19:97. https://doi.org/10.1186/s40246-025-00811-z. [cited 2025 Nov 30];.
Wang T, Ng CY, Ng BZJ, Toh WS, Hui JHP. Multi-omics analysis of small extracellular vesicles in osteoarthritis: bridging the gap between molecular insights and clinical applications. Burns Trauma [Internet]. 2025;13:tkaf023. https://doi.org/10.1093/burnst/tkaf023. [cited 2025 Nov 30];.
Abgrall G, Holder AL, Chelly Dagdia Z, Zeitouni K, Monnet X, Should. AI models be explainable to clinicians? Crit Care [Internet]. 2024 [cited 2025 July 7];28:301. https://doi.org/10.1186/s13054-024-05005-y.
Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions [Internet]. arXiv; 2017 [cited 2025 May 2]. https://doi.org/10.48550/arXiv.1705.07874.
Uthayopas K, de Sá AGC, Alavi A, Pires DEV, Ascher DB. TSMDA: target and symptom-based computational model for miRNA-disease-association prediction. Mol Ther Nucleic Acids. 2021;26:536–46. https://doi.org/10.1016/j.omtn.2021.08.016.
Hassan SU, Abdulkadir SJ, Zahid MSM, Al-Selwi SM. Local interpretable model-agnostic explanation approach for medical imaging analysis: A systematic literature review. Comput Biol Med. 2025;185:109569. https://doi.org/10.1016/j.compbiomed.2024.109569.
Shankaranarayana SM, Runje DALIME. Autoencoder based approach for local interpretability. In: Yin H, Camacho D, Tino P, Tallón-Ballesteros AJ, Menezes R, Allmendinger R, editors. Intell data eng autom Learn – IDEAL 2019. Cham: Springer International Publishing; 2019. pp. 454–63. https://doi.org/10.1007/978-3-030-33607-3_49.
Choi SR, Lee M. Transformer architecture and attention mechanisms in genome data analysis: A comprehensive review. Biology Multidisciplinary Digit Publishing Inst. 2023;12:1033. https://doi.org/10.3390/biology12071033.
Nasir M, Summerfield NS, Simsek S, Oztekin A. An interpretable machine learning methodology to generate interaction effect hypotheses from complex datasets. Decis Sci. 2024;55:549–76. https://doi.org/10.1111/deci.12642.
Zhang Y, Zhang X, Razbek J, Li D, Xia W, Bao L, et al. Opening the black box: interpretable machine learning for predictor finding of metabolic syndrome. BMC Endocr Disord. 2022;22:214. https://doi.org/10.1186/s12902-022-01121-4.
Hadi A, Moradi M, Pang Y, Schott D. Adaptive AI-based surrogate modelling via transfer learning for DEM simulation of multi-component segregation. Sci Rep Nat Publishing Group. 2024;14:27003. https://doi.org/10.1038/s41598-024-78455-7.
Bozzo A, Tsui JMG, Bhatnagar S, Forsberg J. Deep learning and multimodal artificial intelligence in orthopaedic surgery. J Am Acad Orthop Surg. 2024;32:e523–32. https://doi.org/10.5435/JAAOS-D-23-00831.
Kuang L, Wu L, Li Y. Extracellular vesicles in tumor immunity: mechanisms and novel insights. Mol Cancer. 2025;24:45. https://doi.org/10.1186/s12943-025-02233-w.
Sanches PHG, de Melo NC, Porcari AM, de Carvalho LM. Transcriptomics, Proteomics, and Metabolomics. Biology. Volume 13. Multidisciplinary Digital Publishing Institute; 2024. p. 848. https://doi.org/10.3390/biology13110848. Integrating Molecular Perspectives: Strategies for Comprehensive Multi-Omics Integrative Data Analysis and Machine Learning Applications in.
Greening DW, Rai A, Simpson RJ. Extracellular vesicles—An omics view. Proteomics. 2024;24:2400128. https://doi.org/10.1002/pmic.202400128.
Li C, Li R, Ou J, Li F, Deng T, Yan C et al. Quantitative vascular feature-based multimodality prediction model for multi-origin malignant cervical lymphadenopathy. eClinicalMedicine [Internet]. Elsevier; 2025 [cited 2025 May 2];81. https://doi.org/10.1016/j.eclinm.2025.103085.
Babuta M, Szabo G. Extracellular vesicles in inflammation: focus on the MicroRNA cargo of EVs in modulation of liver diseases. J Leukoc Biol [Internet]. 2022;111:75–92. https://doi.org/10.1002/JLB.3MIR0321-156R. [cited 2025 May 2];.
Cui X, Wu R, Liu Y, Chen P, Chang Q, Liang P, et al. ScSMD: a deep learning method for accurate clustering of single cells based on auto-encoder. BMC Bioinf [Internet]. 2025;26:33. https://doi.org/10.1186/s12859-025-06047-x. [cited 2025 Apr 13];.
Wang X, Ye J, Wu Y, Zhang H, Li C, Liu B et al. Integrated lipidomics and RNA-seq reveal prognostic biomarkers in well-differentiated and dedifferentiated retroperitoneal liposarcoma. Cancer Cell Int [Internet]. 2024 [cited 2025 Apr 13];24:404. https://doi.org/10.1186/s12935-024-03585-x.
Flores JE, Claborne DM, Weller ZD, Webb-Robertson B-JM, Waters KM, Bramer LM. Missing data in multi-omics integration: recent advances through artificial intelligence. Front Artif Intell [Internet]. 2023;6:1098308. https://doi.org/10.3389/frai.2023.1098308. [cited 2025 Apr 13];.
Makrodimitris S, Pronk B, Abdelaal T, Reinders M. An in-depth comparison of linear and non-linear joint embedding methods for bulk and single-cell multi-omics. Brief Bioinform [Internet]. Oxford Academic; 2023 [cited 2025 Apr 13];25. https://doi.org/10.1093/bib/bbad416.
Nam Y, Kim J, Jung S-H, Woerner J, Suh EH, Lee D et al. Harnessing AI in Multi-Modal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine. Annu Rev Biomed Data Sci [Internet]. 2024 [cited 2025 Apr 13];7:225–50. https://doi.org/10.1146/annurev-biodatasci-102523-103801.
Picard M, Scott-Boyer M-P, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J [Internet]. 2021;19:3735–46. https://doi.org/10.1016/j.csbj.2021.06.030. [cited 2025 May 2];.
Pantanowitz L, Pearce T, Abukhiran I, Hanna M, Wheeler S, Soong TR, et al. Nongenerative artificial intelligence in medicine: advancements and applications in supervised and unsupervised machine Learning. Mod pathol [Internet]. Elsevier; 2025. [cited 2025 May 2];38. https://doi.org/10.1016/j.modpat.2024.100680.
Novoloaca A, Broc C, Beloeil L, Yu W-H, Becker J. Comparative analysis of integrative classification methods for multi-omics data. Brief Bioinform [Internet]. 2024 [cited 2025 May 2];25:bbae331. https://doi.org/10.1093/bib/bbae331.
Wang L, Zhang H, Yi B, Xie W, Yu K, Li W et al. FactVAE: a factorized variational autoencoder for single-cell multi-omics data integration analysis. Brief Bioinform [Internet]. 2025 [cited 2025 May 2];26:bbaf157. https://doi.org/10.1093/bib/bbaf157.
Ji Y, Dutta P, Davuluri R. Deep multi-omics integration by learning correlation-maximizing representation identifies prognostically stratified cancer subtypes. Bioinforma Adv [Internet]. 2023;3:vbad075. https://doi.org/10.1093/bioadv/vbad075. [cited 2025 May 2];.
Valous NA, Popp F, Zörnig I, Jäger D, Charoentong P. Graph machine learning for integrated multi-omics analysis. Br J Cancer [Internet]. 2024;131:205–11. https://doi.org/10.1038/s41416-024-02706-7. [cited 2025 May 2];.
Briscik M, Tazza G, Vidács L, Dillies M-A, Déjean S. Supervised multiple kernel learning approaches for multi-omics data integration. BioData Min [Internet]. 2024 [cited 2025 May 2];17:53. https://doi.org/10.1186/s13040-024-00406-9.
Bao H, Wang Z, Ma X, Guo W, Zhang X, Tang W, et al. Letter to the editor: an ultra-sensitive assay using cell-free DNA fragmentomics for multi-cancer early detection. Mol Cancer [Internet]. 2022;21:129. https://doi.org/10.1186/s12943-022-01594-w. [cited 2025 Apr 11];.
Xue R, Li X, Yang L, Yang M, Zhang B, Zhang X, et al. Evaluation and integration of cell-free DNA signatures for detection of lung cancer. Cancer Lett [Internet]. 2024;604:217216. https://doi.org/10.1016/j.canlet.2024.217216. [cited 2025 Apr 11];.
Cohn W, Melnik M, Huang C, Teter B, Chandra S, Zhu C, et al. Multi-Omics analysis of microglial extracellular vesicles from human alzheimer’s disease brain tissue reveals disease-Associated signatures. Front Pharmacol. 2021;12:766082. https://doi.org/10.3389/fphar.2021.766082.
Kumar A, Su Y, Sharma M, Singh S, Kim S, Peavey JJ, et al. MicroRNA expression in extracellular vesicles as a novel blood-based biomarker for alzheimer’s disease. Alzheimers Dement [Internet]. 2023;19:4952–66. https://doi.org/10.1002/alz.13055. [cited 2025 May 2];.
Li P, Xu Y, Wang B, Huang J, Li Q. miR-34a-5p and miR-125b-5p attenuate Aβ-induced neurotoxicity through targeting BACE1. J Neurol Sci. 2020;413:116793. https://doi.org/10.1016/j.jns.2020.116793.
Yin F. Lipid metabolism and alzheimer’s disease: clinical evidence, mechanistic link and therapeutic promise. FEBS J [Internet]. 2023;290:1420–53. https://doi.org/10.1111/febs.16344. [cited 2025 May 2];.
Cao Y, Zhao L-W, Chen Z-X, Li S-H. New insights in lipid metabolism: potential therapeutic targets for the treatment of alzheimer’s disease. Front Neurosci [Internet] Front. 2024;18:1430465. https://doi.org/10.3389/fnins.2024.1430465. [cited 2025 May 2];.
Sun J, Li Z, Chen Y, Chang Y, Yang M, Zhong W. Enhancing analysis of extracellular vesicles by microfluidics. Anal Chem Am Chem Soc. 2025;97:6922–37. https://doi.org/10.1021/acs.analchem.4c07016.
Di Santo R, Niccolini B, Romanò S, Vaccaro M, Di Giacinto F, De Spirito M, et al. Advancements in Mid-Infrared spectroscopy of extracellular vesicles. Spectrochim Acta Mol Biomol Spectrosc. 2024;305:123346. https://doi.org/10.1016/j.saa.2023.123346.
Morris EJ, Kaur H, Dobhal G, Malhotra S, Ayed Z, Carpenter AL, et al. The physical characterization of extracellular vesicles for function Elucidation and biomedical applications: A review. Part Part Syst Charact. 2024;41:2400024. https://doi.org/10.1002/ppsc.202400024.
Liu R, Gillies DF. Overfitting in linear feature extraction for classification of high-dimensional image data. Pattern Recognit. 2016;53:73–86. https://doi.org/10.1016/j.patcog.2015.11.015.
Tzaridis T, Bachurski D, Liu S, Surmann K, Babatz F, Gesell Salazar M, et al. Extracellular vesicle separation techniques impact results from human blood samples: considerations for diagnostic applications. Int J Mol Sci. 2021;22:9211. https://doi.org/10.3390/ijms22179211.
Chen W, Yang K, Yu Z, Shi Y, Chen CLP. A survey on imbalanced learning: latest research, applications and future directions. Artif Intell Rev. 2024;57:137. https://doi.org/10.1007/s10462-024-10759-6.
Wei R, Garcia C, El-Sayed A, Peterson V, Mahmood A. Variations in variational Autoencoders - A comparative evaluation. IEEE Access. 2020;8:153651–70. https://doi.org/10.1109/ACCESS.2020.3018151.
Chato L, Regentova E. Survey of transfer learning approaches in the machine learning of digital health sensing data. J Pers Med. 2023;13:1703. https://doi.org/10.3390/jpm13121703.
Ngartera L, Issaka MA, Nadarajah S. Application of bayesian neural networks in healthcare: three case Studies. Mach learn Knowl extr. Multidisciplinary Digit Publishing Inst. 2024;6:2639–58. https://doi.org/10.3390/make6040127.
Abdulrazzaq MM, Ramaha NTA, Hameed AA, Salman M, Yon DK, Fitriyani NL, et al. Consequential advancements of Self-Supervised learning (SSL) in deep learning Contexts. Mathematics. Multidisciplinary Digit Publishing Inst. 2024;12:758. https://doi.org/10.3390/math12050758.
Vaka R, Parent S, Risha Y, Khan S, Courtman D, Stewart DJ, et al. Extracellular vesicle MicroRNA and protein cargo profiling in three clinical-grade stem cell products reveals key functional pathways. Mol Ther Nucleic Acids. 2023;32:80–93. https://doi.org/10.1016/j.omtn.2023.03.001.
Mienye ID, Swart TG. A comprehensive review of deep learning: Architectures, recent Advances, and applications. Inform Multidisciplinary Digit Publishing Inst. 2024;15:755. https://doi.org/10.3390/info15120755.
Libregts SFWM, Arkesteijn GJA, Németh A, Nolte-’t Hoen ENM, Wauben MHM. Flow cytometric analysis of extracellular vesicle subsets in plasma: impact of swarm by particles of non‐interest. J Thromb Haemost. 2018;16:1423–36. https://doi.org/10.1111/jth.14154.
Woud WW, van der Pol E, Mul E, Hoogduijn MJ, Baan CC, Boer K, et al. An imaging flow cytometry-based methodology for the analysis of single extracellular vesicles in unprocessed human plasma. Commun Biol Nat Publishing Group. 2022;5:1–14. https://doi.org/10.1038/s42003-022-03569-5.
Abedi M, Hempel L, Sadeghi S, Kirsten T. GAN-Based approaches for generating structured data in the medical domain. Appl Sci Multidisciplinary Digit Publishing Inst. 2022;12:7075. https://doi.org/10.3390/app12147075.
Karlberg B, Kirchgaessner R, Lee J, Peterkort M, Beckman L, Goecks J, et al. SyntheVAEiser: augmenting traditional machine learning methods with VAE-based gene expression sample generation for improved cancer subtype predictions. Genome Biol. 2024;25:309. https://doi.org/10.1186/s13059-024-03431-3.
Lacan A, Sebag M, Hanczar B. GAN-based data augmentation for transcriptomics: survey and comparative assessment. Bioinformatics. 2023;39:i111–20. https://doi.org/10.1093/bioinformatics/btad239.
Sun C, Dumontier M. Generating unseen diseases patient data using ontology enhanced generative adversarial networks. NPJ Digit Med. 2025;8:4. https://doi.org/10.1038/s41746-024-01421-0.
Bajo-Santos C, Brokāne A, Zayakin P, Endzeliņš E, Soboļevska K, Belovs A, et al. Plasma and urinary extracellular vesicles as a source of RNA biomarkers for prostate cancer in liquid biopsies. Front Mol Biosci [Internet] Front. 2023. https://doi.org/10.3389/fmolb.2023.980433. [cited 2025 May 3];10.
Cui L, Zheng J, Lu Y, Lin P, Lin Y, Zheng Y, et al. New frontiers in salivary extracellular vesicles: transforming diagnostics, monitoring, and therapeutics in oral and systemic diseases. J Nanobiotechnol. 2024;22:171. https://doi.org/10.1186/s12951-024-02443-2.
Sandau US, Magaña SM, Costa J, Nolan JP, Ikezu T, Vella LJ, et al. Recommendations for reproducibility of cerebrospinal fluid extracellular vesicle studies. J Extracell Vesicles. 2024;13:e12397. https://doi.org/10.1002/jev2.12397.
Benameur T, Panaro MA, Porro C. Exosomes and their cargo as a new avenue for brain and treatment of CNS-Related diseases. [cited 2025 May 3]; https://doi.org/10.2174/1874205X-v16-e2201190.
de Miguel Pérez D, Rodriguez Martínez A, Ortigosa Palomo A, Delgado Ureña M, Garcia Puche JL, Robles Remacho A, et al. Extracellular vesicle-miRNAs as liquid biopsy biomarkers for disease identification and prognosis in metastatic colorectal cancer patients. Sci Rep Nat Publishing Group. 2020;10:3974. https://doi.org/10.1038/s41598-020-60212-1.
Matsumura T, Sugimachi K, Iinuma H, Takahashi Y, Kurashige J, Sawada G, et al. Exosomal MicroRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br J Cancer Nat Publishing Group. 2015;113:275–81. https://doi.org/10.1038/bjc.2015.201.
Lee JY, Kim H-S. Extracellular vesicles in neurodegenerative diseases: A Double-Edged sword. Tissue Eng Regen Med. 2017;14:667–78. https://doi.org/10.1007/s13770-017-0090-x.
Taherdoost H, Ghofrani A. AI’s role in revolutionizing personalized medicine by reshaping pharmacogenomics and drug therapy. Intell Pharm. 2024;2:643–50. https://doi.org/10.1016/j.ipha.2024.08.005.
Hong J-S, Son T, Castro CM, Im H. CRISPR/Cas13a-Based MicroRNA detection in Tumor-Derived extracellular vesicles. Adv Sci Weinh Baden-Wurtt Ger. 2023;10:e2301766. https://doi.org/10.1002/advs.202301766.
Stevic I, Müller V, Weber K, Fasching PA, Karn T, Marmé F, et al. Specific MicroRNA signatures in exosomes of triple-negative and HER2-positive breast cancer patients undergoing neoadjuvant therapy within the geparsixto trial. BMC Med. 2018;16:179. https://doi.org/10.1186/s12916-018-1163-y.
Kim Y, Kim JY, Moon S, Lee H, Lee S, Kim JY, et al. Tumor-derived EV MiRNA signatures surpass total EV MiRNA in supplementing mammography for precision breast cancer diagnosis. Theranostics Ivyspring Int Publisher. 2024;14:6587–604. https://doi.org/10.7150/thno.99245.
Zhou J, Hou H-T, Chen H-X, Song Y, Zhou X-L, Zhang L-L, et al. Plasma Exosomal proteomics identifies differentially expressed proteins as biomarkers for acute myocardial infarction. Biomolecules. 2025;15:583. https://doi.org/10.3390/biom15040583.
Sharma N, Angori S, Sandberg A, Mermelekas G, Lehtiö J, Wiklander OPB, et al. Defining the soluble and extracellular vesicle protein compartments of plasma using In-Depth mass Spectrometry-Based proteomics. J Proteome Res Am Chem Soc. 2024;23:4114–27. https://doi.org/10.1021/acs.jproteome.4c00490.
Climente-González H, Oh M, Chajewska U, Hosseini R, Mukherjee S, Gan W et al. Interpretable Machine Learning Leverages Proteomics to Improve Cardiovascular Disease Risk Prediction and Biomarker Identification [Internet]. medRxiv; 2024 [cited 2025 May 3]. p. 2024.01.12.24301213. https://doi.org/10.1101/2024.01.12.24301213.
Mahajan A, Kania V, Agarwal U, Ashtekar R, Shukla S, Patil VM, et al. Deep-Learning-Based predictive imaging biomarker model for EGFR mutation status in Non-Small cell lung cancer from CT imaging. Cancers. 2024;16:1130. https://doi.org/10.3390/cancers16061130.
Li Y, Lv X, Chen C, Yu R, Wang B, Wang D, et al. A deep learning model integrating multisequence MRI to predict EGFR mutation subtype in brain metastases from non-small cell lung cancer. Eur Radiol Exp. 2024;8:2. https://doi.org/10.1186/s41747-023-00396-z.
Haim O, Abramov S, Shofty B, Fanizzi C, DiMeco F, Avisdris N, et al. Predicting EGFR mutation status by a deep learning approach in patients with non-small cell lung cancer brain metastases. J Neurooncol. 2022;157:63–9. https://doi.org/10.1007/s11060-022-03946-4.
Manna I, De Benedittis S, Porro D. Extracellular vesicles in multiple sclerosis: their significance in the development and possible applications as therapeutic agents and biomarkers. Genes. 2024;15:772. https://doi.org/10.3390/genes15060772.
Bravo-Miana RDC, Arizaga-Echebarria JK, Sabas-Ortega V, Crespillo-Velasco H, Prada A, Castillo-Triviño T, et al. Tetraspanins, GLAST and L1CAM quantification in single extracellular vesicles from cerebrospinal fluid and serum of people with multiple sclerosis. Biomedicines. 2024;12:2245. https://doi.org/10.3390/biomedicines12102245.
Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov. 2024;19:33–42. https://doi.org/10.1080/17460441.2023.2273839.
Onciul R, Tataru C-I, Dumitru AV, Crivoi C, Serban M, Covache-Busuioc R-A, et al. Artificial intelligence and neuroscience: transformative synergies in brain research and clinical applications. J Clin Med Multidisciplinary Digit Publishing Inst. 2025;14:550. https://doi.org/10.3390/jcm14020550.
Youssef E, Palmer D, Fletcher B, Vaughn R. Exosomes in precision oncology and beyond: from bench to bedside in diagnostics and Therapeutics. Cancers. Multidisciplinary Digit Publishing Inst. 2025;17:940. https://doi.org/10.3390/cancers17060940.
Beetler DJ, Di Florio DN, Bruno KA, Ikezu T, March KL, Cooper LT, et al. Extracellular vesicles as personalized medicine. Mol Aspects Med. 2023;91:101155. https://doi.org/10.1016/j.mam.2022.101155.
Serretiello E, Smimmo A, Ballini A, Parmeggiani D, Agresti M, Bassi P, et al. Extracellular vesicles and artificial intelligence: unique weapons against breast cancer. Appl Sci Multidisciplinary Digit Publishing Inst. 2024;14:1639. https://doi.org/10.3390/app14041639.
García-Barberán V, Pulgar MEGD, Guamán HM, Benito-Martin A. The times they are AI-changing: AI-powered advances in the application of extracellular vesicles to liquid biopsy in breast cancer. Extracell vesicles circ nucleic acids. Volume 6. OAE Publishing Inc.; 2025. pp. 128–40. https://doi.org/10.20517/evcna.2024.51.
Li J, Wang J, Chen Z. Emerging role of exosomes in cancer therapy: progress and challenges. Mol Cancer. 2025;24:13. https://doi.org/10.1186/s12943-024-02215-4.
Torabi C, Choi S-E, Pisanic TR, Paulaitis M, Hur SC. Streamlined MiRNA loading of surface protein-specific extracellular vesicle subpopulations through electroporation. Biomed Eng OnLine. 2024;23:116. https://doi.org/10.1186/s12938-024-01311-2.
Raschka S, Kaufman B. Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition. Methods San Diego Calif. 2020;180:89–110. https://doi.org/10.1016/j.ymeth.2020.06.016.
Deng J, Li Q, Wang F. Novel administration strategies for tissue-specific delivery of extracellular vesicles. Extracell Vesicle. 2024;4:100057. https://doi.org/10.1016/j.vesic.2024.100057.
Mukerjee N, Bhattacharya A, Maitra S, Kaur M, Ganesan S, Mishra S, et al. Exosome isolation and characterization for advanced diagnostic and therapeutic applications. Mater Today Bio. 2025;31:101613. https://doi.org/10.1016/j.mtbio.2025.101613.
Bader J, Narayanan H, Arosio P, Leroux J-C. Improving extracellular vesicles production through a bayesian optimization-based experimental design. Eur J Pharm Biopharm. 2023;182:103–14. https://doi.org/10.1016/j.ejpb.2022.12.004.
Paproski RJ, Pink D, Sosnowski DL, Vasquez C, Lewis JD. Building predictive disease models using extracellular vesicle microscale flow cytometry and machine learning. Mol Oncol. 2023;17:407–21. https://doi.org/10.1002/1878-0261.13362.
Calvino G, Peconi C, Strafella C, Trastulli G, Megalizzi D, Andreucci S, et al. Federated learning: breaking down barriers in global genomic research. Genes Multidisciplinary Digit Publishing Inst. 2024;15:1650. https://doi.org/10.3390/genes15121650.
Crescitelli R, Falcon-Perez J, Hendrix A, Lenassi M, Minh LTN, Ochiya T, et al. Reproducibility of extracellular vesicle research. J Extracell Vesicles. 2025;14:e70036. https://doi.org/10.1002/jev2.70036.
Gonçalves DM, Henriques R, Costa RS. Predicting metabolic fluxes from omics data via machine learning: moving from knowledge-driven towards data-driven approaches. Comput Struct Biotechnol J. 2023;21:4960–73. https://doi.org/10.1016/j.csbj.2023.10.002.
Paul W, MOHR A. HORTSCH S. Predicting the metabolic condition of a cell culture [Internet]. 2020 [cited 2025 May 3]. https://patents.google.com/patent/US20200377844A1/en?q=(%22not+considered+in+detail%22)&country=US&language=ENGLISH . Accessed 3 May 2025.
Park H, Jang H. Enhancing time series anomaly detection: A knowledge distillation approach with image transformation. Sens Multidisciplinary Digit Publishing Inst. 2024;24:8169. https://doi.org/10.3390/s24248169.
Stawarska A, Bamburowicz-Klimkowska M, Runden-Pran E, Dusinska M, Cimpan MR, Rios-Mondragon I, et al. Extracellular vesicles as Next-Generation diagnostics and advanced therapy medicinal products. Int J Mol Sci. 2024;25:6533. https://doi.org/10.3390/ijms25126533.
Sun D, Cappellari A, Lan B, Abayazid M, Stramigioli S, Niu K. Automatic robotic ultrasound for 3D musculoskeletal reconstruction: A comprehensive Framework. Technologies. Multidisciplinary Digit Publishing Inst. 2025;13:70. https://doi.org/10.3390/technologies13020070.
Guo S, Qin H, Liu K, Wang H, Bai S, Liu S, et al. Blood small extracellular vesicles derived MiRNAs to differentiate pancreatic ductal adenocarcinoma from chronic pancreatitis. Clin Transl Med. 2021;11:e520. https://doi.org/10.1002/ctm2.520.
Fairey A, Paproski RJ, Pink D, Sosnowski DL, Vasquez C, Donnelly B, et al. Clinical analysis of EV-Fingerprint to predict grade group 3 and above prostate cancer and avoid prostate biopsy. Cancer Med. 2023;12:15797–808. https://doi.org/10.1002/cam4.6216.
Di Santo R, Vaccaro M, Romanò S, Di Giacinto F, Papi M, Rapaccini GL, et al. Machine Learning-Assisted FTIR analysis of Circulating extracellular vesicles for cancer liquid biopsy. J Pers Med Multidisciplinary Digit Publishing Inst. 2022;12:949. https://doi.org/10.3390/jpm12060949.
Li W, Zhu L, Li K, Ye S, Wang H, Wang Y, et al. Machine Learning-Assisted Dual-Marker detection in serum small extracellular vesicles for the diagnosis and prognosis prediction of Non-Small cell lung Cancer. Nanomaterials. Volume 12. Multidisciplinary Digital Publishing Institute; 2022. p. 809. https://doi.org/10.3390/nano12050809.
Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J et al. Plasma extracellular vesicles enriched for neuronal origin: A potential window into brain pathologic processes. Front Neurosci [Internet]. Frontiers; 2017 [cited 2025 May 3];11. https://doi.org/10.3389/fnins.2017.00278.
Lu Y, Godbout K, Lamothe G, Tremblay JP. CRISPR-Cas9 delivery strategies with engineered extracellular vesicles. Mol Ther Nucleic Acids. 2023;34:102040. https://doi.org/10.1016/j.omtn.2023.102040.
Paolini A, Baldassarre A, Bruno SP, Felli C, Muzi C, Ahmadi Badi S, et al. Improving the diagnostic potential of extracellular MiRNAs coupled to multiomics data by exploiting the power of artificial intelligence. Front Microbiol. 2022;13:888414. https://doi.org/10.3389/fmicb.2022.888414.
Hanna MG, Pantanowitz L, Dash R, Harrison JH, Deebajah M, Pantanowitz J, et al. Future of artificial Intelligence—Machine learning trends in pathology and medicine. Mod Pathol. 2025;38:100705. https://doi.org/10.1016/j.modpat.2025.100705.
Zhang Q, Ren T, Cao K, Xu Z. Advances of machine learning-assisted small extracellular vesicles detection strategy. Biosens Bioelectron. 2024;251:116076. https://doi.org/10.1016/j.bios.2024.116076.
Wang J, Zhang Z, Wang Y. Utilizing feature selection techniques for AI-Driven tumor subtype classification: enhancing precision in cancer Diagnostics. Biomolecules. Multidisciplinary Digit Publishing Inst. 2025;15:81. https://doi.org/10.3390/biom15010081.
Spies NC, Rangel A, English P, Morrison M, O’Fallon B, Ng DP. Machine learning methods in clinical flow cytometry. Cancers Multidisciplinary Digit Publishing Inst. 2025;17:483. https://doi.org/10.3390/cancers17030483.
Kalinin SV, Mukherjee D, Roccapriore K, Blaiszik BJ, Ghosh A, Ziatdinov MA, et al. Machine learning for automated experimentation in scanning transmission electron microscopy. Npj Comput Mater Nat Publishing Group. 2023;9:1–16. https://doi.org/10.1038/s41524-023-01142-0.
Miao X, Wu Y, Chen L, Gao Y, Wang J, Yin J. Efficient and effective data imputation with influence functions. Proc VLDB Endow. 2021;15:624–32. https://doi.org/10.14778/3494124.3494143.
Li M, Xu P, Hu J, Tang Z, Yang G. From challenges and pitfalls to recommendations and opportunities: implementing federated learning in healthcare. Med Image Anal. 2025;101:103497. https://doi.org/10.1016/j.media.2025.103497.
Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting Black-Box models: A review on explainable artificial intelligence. Cogn Comput. 2024;16:45–74. https://doi.org/10.1007/s12559-023-10179-8.
Sulaieva O, Dudin O, Koshyk O, Panko M, Kobyliak N. Digital pathology implementation in cancer diagnostics: towards informed decision-making. Front Digit Health. 2024;6:1358305. https://doi.org/10.3389/fdgth.2024.1358305.
Glaser M, Littlebury R. Governance of artificial intelligence and machine learning in pharmacovigilance: what works today and what more is needed? Ther Adv Drug Saf. 2024;15:20420986241293303. https://doi.org/10.1177/20420986241293303.
Weitere Informationen
Extracellular vesicles (EVs) are emerging as naturally bioactive nanomaterials with intrinsic biocompatibility and targeting potential. Recent integration of machine learning (ML) into EV research has accelerated advances in molecular profiling, structure-function prediction, and rational design of vesicle-based therapeutics. Yet, the inherent complexity and heterogeneity of EV populations pose major analytical challenges. Concurrently, machine learning is revolutionizing biomedical science by uncovering patterns in high dimensional, multimodal datasets. In EV research, ML has enabled major advances across automated imaging, multi omics integration, disease classification, therapeutic engineering, and standardization. This review presents a comprehensive synthesis of ML-enabled EV studies, organized by data modality (imaging, omics, cytometry), algorithmic paradigm (CNNs, random forests, autoencoders, GNNs), and translational application (diagnosis, prognosis, drug delivery, manufacturing QC). Unlike prior reviews that have typically considered EV biology and AI methods in relative isolation, we introduce a unified three-axis taxonomy that explicitly links EV data modalities, machine learning architectures, and clinical use-cases, thereby providing a structured map of the field. We discuss key technical barriers including data sparsity, batch variability, and model explainability and spotlight frontier developments such as federated learning, self-supervised models, and real-time EV analytics. At the nexus of computational intelligence and nanomedicine, ML-enhanced EV platforms are rapidly progressing from fragmented innovations to clinically actionable systems. This review offers a roadmap for advancing AI-integrated EV technologies in cancer precision medicine.
(© 2025. The Author(s).)
Declarations. Ethical approval: Not applicable. Competing interests: The authors declare no competing interests.