Treffer: Electromechanical computational modeling of heart failure provides extensive analysis of cardiac pathophysiological features.
Arvidsson PM, Berg J, Carlsson M, Arheden H (2024) Noninvasive pressure-volume loops predict major adverse cardiac events in heart failure with reduced ejection fraction. JACC Adv 3(6):100946. https://doi.org/10.1016/j.jacadv.2024.100946. (PMID: 10.1016/j.jacadv.2024.100946)
Augustin CM, Fastl TE, Neic A, Bellini C, Whitaker J, Rajani R et al (2020) The impact of wall thickness and curvature on wall stress in patient-specific electromechanical models of the left atrium. Biomech Model Mechanobiol 19(3):1015–1034. (PMID: 10.1007/s10237-019-01268-5)
Augustin CM, Gsell MA, Karabelas E, Willemen E, Prinzen FW, Lumens J et al (2021) A computationally efficient physiologically comprehensive 3D–0D closed-loop model of the heart and circulation. Comput Methods Appl Mech Eng 386:114092. (PMID: 10.1016/j.cma.2021.114092)
Avazmohammadi R, Soares JS, Li DS, Eperjesi T, Pilla J, Gorman RC et al (2020) On the in vivo systolic compressibility of left ventricular free wall myocardium in the normal and infarcted heart. J Biomech 107:109767. (PMID: 10.1016/j.jbiomech.2020.109767)
Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415(6868):198–205. https://doi.org/10.1038/415198a. (PMID: 10.1038/415198a)
Blanco PJ, Feijóo RA (2010) A 3D–1D-0D computational model for the entire cardiovascular system. Mecánica Computacional 29(59):5887–5911.
Brady B, King G, Murphy RT et al (2023) Myocardial strain: a clinical review. Ir J Med Sci 192(4):1649–1656. https://doi.org/10.1007/s11845-022-03210-8. (PMID: 10.1007/s11845-022-03210-8)
Bucelli M, Zingaro A, Africa PC, Fumagalli I, Dede’ L, Quarteroni A (2023) A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: application to the human left heart. Int J Numer Methods Biomed Eng 39(3):e3678. (PMID: 10.1002/cnm.3678)
Buss SJ, Mereles D, Emami M, Korosoglou G, Keller MG, Giannitsis E et al (2015) Assessment of myocardial deformation with cardiac MRI and echocardiography: from techniques to clinical applications. Eur Heart J - Cardiovasc Imaging 16(8):819–827. https://doi.org/10.1093/ehjci/jeu181. (PMID: 10.1093/ehjci/jeu181)
Casoni E, Jérusalem A, Samaniego C, Eguzkitza B, Lafortune P, Tjahjanto DD et al (2014) Alya: computational Solid Mechanics for Supercomputers. Archives Comput Methods Eng 22(4):557–576. https://doi.org/10.1007/s11831-014-9126-8. (PMID: 10.1007/s11831-014-9126-8)
Coppini R, Ferrantini C, Yao L, Fan P, Lungo MD, Stillitano F et al (2013) Late sodium current inhibition reverses electromechanical dysfunction in human hypertrophic cardiomyopathy. Circulation 127(5):575–584. https://doi.org/10.1161/CIRCULATIONAHA.112.134932. (PMID: 10.1161/CIRCULATIONAHA.112.134932)
Coronel R, Wilders R, Verkerk AO, Wiegerinck RF, Benoist D, Bernus O (2013) Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1832(12):2432–2441 https://doi.org/10.1016/j.bbadis.2013.04.002.
Cosín Aguilar J, Hernándiz Martínez A (2013) The band arrangement of myocardial fibres determines cardiac morphology and function. Revista Española de Cardiología (English Edition). 66(10):768–770 https://www.sciencedirect.com/science/article/pii/S188558571300176X , https://doi.org/10.1016/j.rec.2013.05.011.
Doste R, Soto-Iglesias D, Bernardino G, Alcaine A, Sebastian R, Giffard-Roisin S et al (2019) A rule-based method to model myocardial fiber orientation in cardiac biventricular geometries with outflow tracts. Int J Numer Methods Biomed Eng 35(4):e3185. https://doi.org/10.1002/cnm.3185. (PMID: 10.1002/cnm.3185)
Dupont E, Matsushita T, Kaba RA, Vozzi C, Coppen SR, Khan N et al (2001) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33(2):359–371. (PMID: 10.1006/jmcc.2000.1308)
Durrer D, Damm RTV, Freud GE, Janse MJ, Meijler FL, Arzabaecher RC (1970) Total excitation of the isolated human heart. Circulation 41(6):899–912. https://doi.org/10.1161/01.CIR.41.6.899. (PMID: 10.1161/01.CIR.41.6.899)
Dutta S, Chang KC, Beattie KA, Sheng J, Tran PN, Wu WW et al (2017) Corrigendum: optimization of an In silico cardiac cell model for Proarrhythmia risk assessment. Front Physiol 8–2017 https://doi.org/10.3389/fphys.2017.01025.
Díez-Villanueva P, Jiménez-Méndez C, Alfonso F (2021) Heart failure in the elderly. J Geriatric Cardiol 18(3):219–232 https://doi.org/10.11909/j.issn.1671-5411.2021.03.009.
Erley J, Starekova J, Sinn M et al (2022) Cardiac magnetic resonance feature tracking global and segmental strain in acute and chronic ST-elevation myocardial infarction. Sci Rep 12:22644. https://doi.org/10.1038/s41598-022-26968-4. (PMID: 10.1038/s41598-022-26968-4)
Fedele M, Piersanti R, Regazzoni F, Salvador M, Africa PC, Bucelli M et al (2023) A comprehensive and biophysically detailed computational model of the whole human heart electromechanics. Comput Methods Appl Mech Eng 410:115983. (PMID: 10.1016/j.cma.2023.115983)
Garcia-Gasulla M, Labarta J, Corbalan J (2014) Hints to improve automatic load balancing with LeWI for hybrid applications. J Parallel Distrib Computing 09:74. https://doi.org/10.1016/j.jpdc.2014.05.004. (PMID: 10.1016/j.jpdc.2014.05.004)
Gaudron P, Eilles C, Kugler I, Ertl G (1993) Progressive left ventricular dysfunction and remodeling after myocardial infarction. Potential Mech Early Predict Circulation 87(3):755–763. https://doi.org/10.1161/01.CIR.87.3.755. (PMID: 10.1161/01.CIR.87.3.755)
Gjesdal O, Bluemke DA, Lima JAC (2011) Cardiac remodeling at the population level-risk factors, screening, and outcomes. Nature Rev Cardiol 8:673–685. (PMID: 10.1038/nrcardio.2011.154)
Gomez JF, Cardona K, Romero L, Ferrero JM Jr, Trenor B (2014) Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 1D simulation study. PLOS ONE 9(9):1–14. https://doi.org/10.1371/journal.pone.0106602. (PMID: 10.1371/journal.pone.0106602)
Gonzalez-Martin P, Sacco F, Butakoff C, Doste R, Bederian C, Gutierrez E, de los Monteros LK et al (2023) Ventricular anatomical complexity and sex differences impact predictions from electrophysiological computational models. PLoS ONE 18(2):e0263639. (PMID: 10.1371/journal.pone.0263639)
Halliday BP, Senior R, Pennell DJ (2020) Assessing left ventricular systolic function: from ejection fraction to strain analysis. Eur Heart J 42(7):789–797. (PMID: 10.1093/eurheartj/ehaa587)
Haugaa KK, Haugen KH, Græsdal T, Haugen KH, Dejgaard LA, Andersson CG et al (2023) Myocardial strain as a risk marker in patients with suspected myocardial ischemia: a substudy of the Dan-NICAD trial. Sci Rep 13(1):17929. https://doi.org/10.1038/s41598-023-50835-5. (PMID: 10.1038/s41598-023-50835-5)
Heidenreich PA, Bozkurt B, Aguilar D, Allen LA, Byun JJ, Colvin MM et al (2022) AHA/ACC/HFSA guideline for the management of heart failure: a report of the american college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation 145(18):e895–e1032. https://doi.org/10.1161/CIR.0000000000001063. (PMID: 10.1161/CIR.0000000000001063)
Hiremath G, Batlivala S, Callahan R, Thatte N, Rockefeller T, Nawaytou H et al (2023) Clinical applications of pressure-volume assessment in congenital heart disease. J Soc Cardiovasc Angiography Interv. https://doi.org/10.1016/j.jscai.2023.100599. (PMID: 10.1016/j.jscai.2023.100599)
Holzapfel GA (2009) Ogden RW (1902) constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos Trans Royal Soc A Math Phys Eng Sci 367:3445–3475. https://doi.org/10.1098/rsta.2009.0091. (PMID: 10.1098/rsta.2009.0091)
Houzeaux G, Garcia-Gasulla M, Cajas JC, Borrell R, Santiago A, Moulinec C et al (2020) Parallel multiphysics coupling: algorithmic and computational performances. Int J Comput Fluid Dyn 34(7–8):486–507. (PMID: 10.1080/10618562.2020.1783440)
Janse MJ (2004) Electrophysiological changes in heart failure and their relationship to arrhythmogenesis. Cardiovasc Res 61(2):208–217. https://doi.org/10.1016/j.cardiores.2003.11.018. (PMID: 10.1016/j.cardiores.2003.11.018)
Jenča D, Melenovský V, Stehlik J, Staněk V, Kettner J, Kautzner J et al (2021) Heart failure after myocardial infarction: incidence and predictors. ESC Heart Failure 8(1):222–237. https://doi.org/10.1002/ehf2.13144. (PMID: 10.1002/ehf2.13144)
Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S (2009) The role of cardiovascular magnetic resonance imaging in heart failure. J American Coll Cardiol 54(15):1407–1424. https://doi.org/10.1016/j.jacc.2009.04.094. (PMID: 10.1016/j.jacc.2009.04.094)
Kim R, Fieno D, Parrish T, Harris K, Chen E, Simonetti O et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002. https://doi.org/10.1161/01.CIR.100.19.1992.
Koopsen T, Beela AS, Van Osta N, Van Loon T, Kirkels FP, Meiburg R, et al (2022) Strain-based characterization of electromechanical tissue properties using patient-specific simulation of dyssynchronous hearts: a pilot study. Eur Heart J Cardiovasc Imaging. 23(Supplement_1):jeab289.087 https://doi.org/10.1093/ehjci/jeab289.087.
Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B et al (2014) Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J American Coll Cardiol 63(5):447–456. https://doi.org/10.1016/j.jacc.2013.09.052. (PMID: 10.1016/j.jacc.2013.09.052)
Kung GL, Vaseghi M, Gahm JK, Shevtsov J, Garfinkel A, Shivkumar K et al (2018) Microstructural infarct border zone remodeling in the post-infarct swine heart measured by diffusion tensor MRI. Front Physiol 9:826. (PMID: 10.3389/fphys.2018.00826)
Lafortune P, Arís R, Vázquez M, Houzeaux G (2012) Coupled electromechanical model of the heart: parallel finite element formulation. Int J Numer Methods Biomed Eng 28(1):72–86. (PMID: 10.1002/cnm.1494)
Land S, Park-Holohan SJ, Smith NP, dos Remedios CG, Kentish JC, Niederer SA (2017) A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J Mol Cell Cardiol 106:68–83. (PMID: 10.1016/j.yjmcc.2017.03.008)
Levrero-Florencio F, Margara F, Zacur E, Bueno-Orovio A, Wang ZJ, Santiago A et al (2020) Sensitivity analysis of a strongly-coupled human-based electromechanical cardiac model: effect of mechanical parameters on physiologically relevant biomarkers. Computer Methods Appl Mech Eng 361:112762. https://doi.org/10.1016/j.cma.2019.112762. (PMID: 10.1016/j.cma.2019.112762)
Li H, Hastings MH, Rhee J, Trager LE, Roh JD, Rosenzweig A (2020) Targeting age-related pathways in heart failure. Circ Res 126(4):533–551. https://doi.org/10.1161/CIRCRESAHA.119.315889. (PMID: 10.1161/CIRCRESAHA.119.315889)
Li JKJ, Zhu Y (1994) Arterial compliance and its pressure dependence in hypertension and vasodilation. Angiology 45(2):113–117. https://doi.org/10.1177/000331979404500205. (PMID: 10.1177/000331979404500205)
Li P, Zhao H, Zhang J, Ning Y, Tu Y, Xu D et al (2021) Similarities and differences between HFmrEF and HFpEF. Front Cardiovasc Med. https://doi.org/10.3389/fcvm.2021.678614. (PMID: 10.3389/fcvm.2021.678614)
Little WC (2008) Hypertension, heart failure, and ejection fraction. Circulation 118(22):2223–2223. https://doi.org/10.1161/CIRCULATIONAHA.108.819318. (PMID: 10.1161/CIRCULATIONAHA.108.819318)
Liu H, Soares JS, Walmsley J, Li DS, Raut S, Avazmohammadi R et al (2021) The impact of myocardial compressibility on organ-level simulations of the normal and infarcted heart. Sci Rep 11(1):13466. (PMID: 10.1038/s41598-021-92810-y)
Lo SC, Zingaro A, McCullough JW, Xue X, Gonzalez-Martin P, Joo B et al (2025) A multi-component, multi-physics computational model for solving coupled cardiac electromechanics and vascular haemodynamics. Comput Methods Appl Mech Eng 446:118185. (PMID: 10.1016/j.cma.2025.118185)
Lopez-Perez A, Sebastian R, Izquierdo M, Ruiz R, Bishop M, Ferrero JM (2019) Personalized cardiac computational models: from clinical data to simulation of infarct-related ventricular tachycardia. Front Physiol. https://doi.org/10.3389/fphys.2019.00580/full. (PMID: 10.3389/fphys.2019.00580/full)
Marx L, Niestrawska JA, Gsell MA, Caforio F, Plank G, Augustin CM (2022) Robust and efficient fixed-point algorithm for the inverse elastostatic problem to identify myocardial passive material parameters and the unloaded reference configuration. J Comput Phys 463:111266. (PMID: 10.1016/j.jcp.2022.111266)
el Mathari S, Bhoera R, Hopman L, Heidendael J, Malekzadeh A, Nederveen A et al (2024) Disparities in quantification of mitral valve regurgitation between cardiovascular magnetic resonance imaging and trans-thoracic echocardiography: a systematic review. Int J Cardiovasc Imaging 11:1–12. https://doi.org/10.1007/s10554-024-03280-y. (PMID: 10.1007/s10554-024-03280-y)
Mendonca Costa C, Plank G, Rinaldi CA, Niederer SA, Bishop MJ (2018) Modeling the electrophysiological properties of the infarct border zone. Front Physiol. https://doi.org/10.3389/fphys.2018.00356. (PMID: 10.3389/fphys.2018.00356)
Mora MT, Zaza A, Trenor B (2023) Insights from an electro-mechanical heart failure cell model: role of SERCA enhancement on arrhythmogenesis and myocyte contraction. Comput Methods Prog Biomed. https://doi.org/10.1016/j.cmpb.2023.107350. (PMID: 10.1016/j.cmpb.2023.107350)
on Myocardial Segmentation AHAWG, for Cardiac Imaging: R, Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, et al (2002) Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. Circulation 105(4):539–542 https://doi.org/10.1161/hc0402.102975.
Nazarian S, Bluemke DA, Lardo AC, Halperin HR (2012) Magnetic resonance assessment of electromechanical substrate in ventricular tachycardia: mechanisms and clinical implications. Circulation 126(4):407–416. https://doi.org/10.1161/CIRCULATIONAHA.111.084343. (PMID: 10.1161/CIRCULATIONAHA.111.084343)
Niederer S, Kerfoot E, Benson A, Bernabeu M, Bernus O, Bradley C et al (2011) Verification of cardiac tissue electrophysiology simulators using an N-Version benchmark. Philos Transact A Math Phys Eng Sci 11(369):4331–51. https://doi.org/10.1098/rsta.2011.0139. (PMID: 10.1098/rsta.2011.0139)
Niederer S, Lumens J, Trayanova N (2019) Computational models in cardiology. Nat Rev Cardiol 16(2):100–111. https://doi.org/10.1038/s41569-018-0104-y. (PMID: 10.1038/s41569-018-0104-y)
Nordlund D, Lav T, Jablonowski R, Khoshnood A, Ekelund U, Atar D et al (2024) Contractility, ventriculoarterial coupling, and stroke work after acute myocardial infarction using CMR-derived pressure-volume loop data. Clin Cardiol 47(1):e24216-22. https://doi.org/10.1002/clc.24216. (PMID: 10.1002/clc.24216)
O’Hara T, Virág L, Varró A, Rudy Y (2011) Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput Biol 7(5):1–29. https://doi.org/10.1371/journal.pcbi.1002061. (PMID: 10.1371/journal.pcbi.1002061)
Owashi K, Taconné M, Courtial N, Simon A, Garreau M, Hernandez A et al (2022) Desynchronization strain patterns and contractility in left bundle branch block through computer model simulation. J Cardiovasc Develop Dis. https://doi.org/10.3390/jcdd9020053. (PMID: 10.3390/jcdd9020053)
Park JJ, Mebazaa A, Hwang I, Park J, Park J, Cho G (2020) Phenotyping Heart Failure According to the Longitudinal Ejection Fraction Change: Myocardial Strain, Predictors, and Outcomes. J Am Heart Assoc 9(12):e015009. https://doi.org/10.1161/JAHA.119.015009.
Passini E, Minchole A, Coppini R, Cerbai E, Rodriguez B, Severi S, et al (2016) Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. J Mol Cell Cardiol. 96:72–81. https://www.ncbi.nlm.nih.gov/pubmed/26385634 , https://doi.org/10.1016/j.yjmcc.2015.09.003.
Peirlinck M, Costabal FS, Yao J, Guccione J, Tripathy S, Wang Y et al (2021) Precision medicine in human heart modeling: perspectives, challenges, and opportunities. Biomech Model Mechanobiol 20:803–831. (PMID: 10.1007/s10237-021-01421-z)
Piacentino V, Weber CR, Chen X, Weisser-Thomas J, Margulies KB, Bers DM et al (2003) Cellular basis of abnormal calcium transients of failing human ventricular myocytes. Circ Res 92(6):651–658. https://doi.org/10.1161/01.RES.0000062469.83985.9B. (PMID: 10.1161/01.RES.0000062469.83985.9B)
Priebe L, Beuckelmann DJ (1998) Simulation Study of Cellular Electric Properties in Heart Failure. Circ Res 82(11):1206–1223. https://doi.org/10.1161/01.RES.82.11.1206. (PMID: 10.1161/01.RES.82.11.1206)
Ramlakhan KP, Malhamé I, Marelli A, Rutz T, Goland S, Franx A et al (2022) Hypertensive disorders of pregnant women with heart disease: the ESC EORP ROPAC Registry. Eur Heart J 43(38):3749–3761. (PMID: 10.1093/eurheartj/ehac308)
Reeves WC, Ettinger U, Thomson K, Nanda N, Gramiak R, DeWeese J, et al (1979) Limitations in the Echocardiography Assessment of Aortic Root Dimensions in the Presence of Aortic Valve Disease. Radiology. 132(2):411–413. pMID: 461801, https://doi.org/10.1148/132.2.411.
Regazzoni F, Salvador M, Africa PC, Fedele M, Dede L, Quarteroni A (2022) A cardiac electromechanical model coupled with a lumped-parameter model for closed-loop blood circulation. J Comput Phys 02(457):111083. https://doi.org/10.1016/j.jcp.2022.111083.
Rice JJ, Winslow RL, Hunter WC. (1999) Comparison of putative cooperative mechanisms in cardiac muscle: length dependence and dynamic responses. American Journal of Physiology-Heart and Circulatory Physiology. 276(5):H1734–H1754. pMID: 29598461, https://doi.org/10.1152/ajpheart.1999.276.5.H1734.
Ringenberg J, Trayanova N, Zahid S (2021) Electromechanical Wave Dynamics in the Human Heart: Insights from Multi-Scale Simulations and Clinical Data. Prog Biophys Mol Biol 159:98–113. https://doi.org/10.1016/j.pbiomolbio.2021.05.003. (PMID: 10.1016/j.pbiomolbio.2021.05.003)
Salvador M, Fedele M, Africa PC, Sung E, Dede’ L, Prakosa A, et al (2021) Electromechanical modeling of human ventricles with ischemic cardiomyopathy: numerical simulations in sinus rhythm and under arrhythmia. Computers in Biology and Medicine. 136:104674. https://www.sciencedirect.com/science/article/pii/S0010482521004686 , https://doi.org/10.1016/j.compbiomed.2021.104674.
Santiago A, Aguado-Sierra J, Zavala-Aké M, Doste-Beltran R, Gómez S, Arís R et al (2018) Fully coupled fluid-electro-mechanical model of the human heart for supercomputers. International journal for numerical methods in biomedical engineering 34(12):e3140.
Sapp JL, Wells GA, Parkash R, Stevenson WG, Blier L, Sarrazin JF et al (2016) Ventricular Tachycardia Ablation versus Escalation of Antiarrhythmic Drugs. N Engl J Med 375(2):111–121. https://doi.org/10.1056/NEJMoa1513614. (PMID: 10.1056/NEJMoa1513614)
Sebastian R, Zimmerman V, Sukno F, Bijnens BB, Frangi AF (2010) Cardiac Modelling for Pathophysiology Research and Clinical Applications. The Need for an Automated Pipeline. In: Dössel O, Schlegel WC, editors. World Congress on Medical Physics and Biomedical Engineering, September 7 - 12, 2009, Munich, Germany Berlin, Heidelberg: Springer Berlin Heidelberg; p. 2207–2210.
Sharrack N, Das A, Kelly C, Sinha A, Garg P, Swoboda P, et al (2022) The relationship between myocardial microstructure and strain in chronic infarction using cardiovascular magnetic resonance diffusion tensor imaging and feature tracking. Journal of Cardiovascular Magnetic Resonance. 24(66). https://doi.org/10.1186/s12968-022-00892-y.
Shenasa M, Miller JM, Callans DJ, Almendral JM, Marchlinski FE, Buxton AE (2017) Conquest of Ventricular Tachycardia: Insights Into Mechanisms. Innovations in Management Circ Arrhythm Electrophysiol 10(5):50. https://doi.org/10.1161/CIRCEP.117.005150. (PMID: 10.1161/CIRCEP.117.005150)
Smiseth OA, Rider O, Cvijic M, Valkovič L, Remme EW, Voigt JU (2024) Myocardial Strain Imaging: Theory, Current Practice, and the Future. JACC: Cardiovascular Imaging. https://www.sciencedirect.com/science/article/pii/S1936878X24003012 , https://doi.org/10.1016/j.jcmg.2024.07.011.
Smiseth OA, Torp H, Opdahl A, Haugaa KH, Urheim S (2015) Myocardial strain imaging: how useful is it in clinical decision making? Eur Heart J 37(15):1196–1207. https://doi.org/10.1093/eurheartj/ehv529. (PMID: 10.1093/eurheartj/ehv529)
St Pierre SR, Peirlinck M, Kuhl E (2022) Sex Matters: A Comprehensive Comparison of Female and Male Hearts. Front Physiol 13. https://doi.org/10.3389/fphys.2022.831179.
Stevenson WG (2009) Ventricular scars and ventricular tachycardia. Trans Am Clin Climatol Assoc 120:403.
Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH (1969) Fiber Orientation in the Canine Left Ventricle during Diastole and Systole. Circ Res 24(3):339–347. https://doi.org/10.1161/01.RES.24.3.339. (PMID: 10.1161/01.RES.24.3.339)
Strocchi M, Longobardi S, Augustin CM, Gsell MA, Petras A, Rinaldi CA et al (2023) Cell to whole organ global sensitivity analysis on a four-chamber heart electromechanics model using Gaussian processes emulators. PLoS Comput Biol 19(6):e1011257.
Strohbach A, Busch R (2021) Predicting the In Vivo Performance of Cardiovascular Biomaterials: Current Approaches In Vitro Evaluation of Blood-Biomaterial Interactions. International Journal of Molecular Sciences. 22(21). https://www.mdpi.com/1422-0067/22/21/11390 , https://doi.org/10.3390/ijms222111390.
Sun K, Stander N, Jhun CS, Zhang Z, Suzuki T, Wang GY et al (2009) A Computationally Efficient Formal Optimization of Regional Myocardial Contractility in a Sheep With Left Ventricular Aneurysm. J Biomech Eng 131(11):111001.
Sutton MGSJ, Sharpe N (2000) Left Ventricular Remodeling After Myocardial Infarction. Circulation 101(25):2981–2988. https://doi.org/10.1161/01.CIR.101.25.2981. (PMID: 10.1161/01.CIR.101.25.2981)
Taggart P, Sutton PM, Opthof T, Coronel R, Trimlett R, Pugsley W et al (2000) Inhomogeneous Transmural Conduction During Early Ischaemia in Patients with Coronary Artery Disease. J Mol Cell Cardiol 32(4):621–630. https://doi.org/10.1006/jmcc.2000.1105. (PMID: 10.1006/jmcc.2000.1105)
Trayanova NA, O’Hara T, Bayer JD, Boyle PM, McDowell KS, Constantino J, et al (2012) Computational cardiology: how computer simulations could be used to develop new therapies and advance existing ones. Europace. 14(suppl_5):v82–v89.
Vancheri F, Longo G, Henein MY. (2024) Left ventricular ejection fraction: clinical, pathophysiological, and technical limitations. Frontiers in Cardiovascular Medicine. 11. https://www.frontiersin.org/journals/cardiovascular-medicine/articles/10.3389/fcvm.2024.1340708 , https://doi.org/10.3389/fcvm.2024.1340708.
Vázquez M, Houzeaux G, Koric S, Artigues A, Aguado-Sierra J, Arís R et al (2016) Alya: Multiphysics engineering simulation toward exascale. Journal of Computational Science 14:15–27. https://doi.org/10.1016/j.jocs.2015.12.007. (PMID: 10.1016/j.jocs.2015.12.007)
Villar Valero J, Gomez JF, Fomez D David Soto-Iglesias, Penela D, Berruezo A, Trénor B (2023) Estudio in silico de la Inducibilidad de Arritmias Reentrantes en Modelos Personalizados de Ventrículos Infartados.
Wacker CM, Wiesmann F, Bock M, Jakob P, Sandstede JJ, Lehning A et al (2002) Determination of regional blood volume and intra-extracapillary water exchange in human myocardium using Feruglose: first clinical results in patients with coronary artery disease. Magnetic Resonance in Medicine An Official Journal of the International Society for Magnetic Resonance in Medicine 47(5):1013–1016. (PMID: 10.1002/mrm.10125)
Wang Y, Hill JA (2010) Electrophysiological Remodeling in Heart Failure. J Mol Cell Cardiol 48(4):619–632. https://doi.org/10.1016/j.yjmcc.2010.01.009. (PMID: 10.1016/j.yjmcc.2010.01.009)
Warriner D, Brown A, Varma S, Sheridan P, Lawford P, Hose D et al (2014) Closing the Loop: Modelling of Heart Failure Progression from Health to End-Stage Using a Meta-Analysis of Left Ventricular Pressure-Volume Loops. PLoS ONE 12(9):e114153. https://doi.org/10.1371/journal.pone.0114153.
Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial windkessel. Medical & biological engineering & computing 47(2):131–141. (PMID: 10.1007/s11517-008-0359-2)
Willems E, Janssens KLPM, Dekker LRC, van de Vosse FN, Cluitmans MJM, Bovendeerd PHM (2024) Strain-controlled electrophysiological wave propagation alters in silico scar-based substrate for ventricular tachycardia. Frontiers in Physiology. 15. https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2024.1330157 , https://doi.org/10.3389/fphys.2024.1330157.
Wu E, Ortiz-Perez JT (2007) Effect of Left Ventricular Scar Size, Location, and Transmurality on Left Ventricular Remodeling. American Journal of Cardiology. 99(6):884–890. https://www.ajconline.org/article/S0002-9149(07)00067-7/fulltext , https://doi.org/10.1016/j.amjcard.2006.10.061.
Yin F, Chan C, Judd RM (1996) Compressibility of perfused passive myocardium. American Journal of Physiology-Heart and Circulatory Physiology 271(5):H1864–H1870. (PMID: 10.1152/ajpheart.1996.271.5.H1864)
Zhao B, Zhang S, Chen L, Xu K, Hou Y, Han S (2024) Characteristics and prognostic value of cardiac magnetic resonance strain analysis in patients with different phenotypes of heart failure. Frontiers in Cardiovascular Medicine 11:1366702. https://doi.org/10.3389/fcvm.2024.1366702. (PMID: 10.3389/fcvm.2024.1366702)
Zhou X, Wang ZJ, Camps J, Tomek J, Santiago A, Quintanas A, et al (2024) Clinical phenotypes in acute and chronic infarction explained through human ventricular electromechanical modelling and simulations. bioRxiv. https://doi.org/10.1101/2022.02.15.480392.
Zingaro A, Bucelli M, Piersanti R, Regazzoni F, Dede L, Quarteroni A (2024) An electromechanics-driven fluid dynamics model for the simulation of the whole human heart. J Comput Phys 504:112885.
Zingaro A, Vergara C, Dede’ L, Regazzoni F, Quarteroni A (2023) A comprehensive mathematical model for cardiac perfusion. Sci Rep 13(1):14220. (PMID: 10.1038/s41598-023-41312-0)
Weitere Informationen
This study applies a high-performance, fully coupled 3D-0D electromechanical model to simulate cardiac function across multiple scenarios of heart failure with reduced ejection fraction (HFrEF), including ventricular tachycardia post-myocardial infarction and acute hypertension. By integrating biomechanical deformation, electromechanical coupling, and hemodynamic feedback, the model provides a comprehensive analysis of different stages of heart failure. A physiologically detailed 3D-0D electromechanical model was used to simulate pressure-volume loops under different pathological conditions. The model incorporates hemodynamic coupling within an electromechanical framework to quantify left ventricular performance markers in virtual scenarios. Additionally, myocardial strains along the principal fiber direction were computed to assess systolic dysfunction and deformation. The simulations accurately predicted the hemodynamic impact of HFrEF according to their electrophysiological and mechanical properties. The computationally derived pressure-volume loops demonstrated a strong agreement with clinical findings, highlighting key features of HFrEF such as reduced stroke volume, impaired contractility, and decreased ejection fraction. Furthermore, scar-related conduction abnormalities were associated with an increased risk of ventricular tachycardia, with failing hearts exhibiting greater hemodynamic instability during arrhythmic episodes. The proposed computational framework provides a powerful tool for investigating HFrEF progression and electromechanical dysfunction. By accurately replicating pressure-volume loop characteristics and hemodynamic alterations commonly seen in clinical settings, this model enhances the understanding of HFrEF and may support the development of targeted therapeutic strategies.
(© 2025. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
Declarations. Conflict of interest: The authors declare no conflict of interest. MV is the CTO and co-founder of ELEM Biotech SL. Ethical approval: The patients, who underwent the standard clinical protocol, gave written informed consent for the use of their anonymized clinical data in this study. Consent for publication: All participants provided consent for publication.