Treffer: Adaptive Thermal Imaging Signal Analysis for Real-Time Non-Invasive Respiratory Rate Monitoring.
Sensors (Basel). 2020 Apr 13;20(8):. (PMID: 32294973)
J Adv Nurs. 2021 Jan;77(1):98-124. (PMID: 33038030)
J Med Syst. 2023 Jan 24;47(1):12. (PMID: 36692798)
Sensors (Basel). 2025 Jul 05;25(13):. (PMID: 40648454)
Sensors (Basel). 2024 Oct 02;24(19):. (PMID: 39409425)
IEEE J Biomed Health Inform. 2025 Oct;29(10):7387-7395. (PMID: 40323749)
BMJ. 2008 Nov 17;337:a2227. (PMID: 19015185)
Sensors (Basel). 2021 Jul 29;21(15):. (PMID: 34372363)
Sci Rep. 2024 Nov 13;14(1):27794. (PMID: 39537659)
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Apr;69(4):1219-1229. (PMID: 35130155)
Eur Rev Aging Phys Act. 2023 Aug 29;20(1):16. (PMID: 37644386)
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2744-2747. (PMID: 31946462)
J Clin Monit Comput. 2023 Jun;37(3):815-828. (PMID: 36463541)
Physiol Meas. 2019 Aug 02;40(7):07TR01. (PMID: 31195383)
Physiol Meas. 2022 Jul 07;43(7):. (PMID: 35255488)
IEEE J Transl Eng Health Med. 2023 Jul 17;11:505-514. (PMID: 37817827)
IEEE Trans Biomed Circuits Syst. 2022 Feb;16(1):153-167. (PMID: 35104225)
Biotechnol Bioeng. 2024 Apr;121(4):1191-1215. (PMID: 38221763)
Sensors (Basel). 2024 Dec 19;24(24):. (PMID: 39771853)
Front Med Technol. 2024 Aug 29;6:1436034. (PMID: 39328308)
Sensors (Basel). 2020 Nov 05;20(21):. (PMID: 33167556)
Biomed Opt Express. 2017 Sep 13;8(10):4480-4503. (PMID: 29082079)
Sensors (Basel). 2019 Feb 21;19(4):. (PMID: 30795595)
IEEE Rev Biomed Eng. 2022;15:103-121. (PMID: 33156794)
ERJ Open Res. 2020 Sep 28;6(3):. (PMID: 33015146)
IEEE Trans Biomed Eng. 2019 Apr;66(4):1105-1114. (PMID: 30139045)
Sensors (Basel). 2025 Jun 19;25(12):. (PMID: 40573723)
Intensive Care Med. 1992;18(4):193-201. (PMID: 1430581)
IEEE J Biomed Health Inform. 2021 Apr;25(4):1031-1040. (PMID: 32750965)
Sensors (Basel). 2022 Jul 13;22(14):. (PMID: 35890928)
Biosensors (Basel). 2025 Jul 28;15(8):. (PMID: 40862947)
PLoS One. 2018 Jan 5;13(1):e0190466. (PMID: 29304152)
Biosensors (Basel). 2024 Feb 06;14(2):. (PMID: 38392009)
Sensors (Basel). 2021 Jun 27;21(13):. (PMID: 34199084)
J Clin Monit Comput. 2020 Apr;34(2):223-231. (PMID: 31161533)
Z Gerontol. 1992 Jul-Aug;25(4):278-82. (PMID: 1413966)
Front Med (Lausanne). 2023 Oct 31;10:1243050. (PMID: 38020176)
Weitere Informationen
(1) Background: This study presents an adaptive, contactless, and privacy-preserving respiratory-rate monitoring system based on thermal imaging, designed for real-time operation on embedded edge hardware. The system continuously processes temperature data from a compact thermal camera without external computation, enabling practical deployment for home or clinical vital-sign monitoring. (2) Methods: Thermal frames are captured using a 256×192 TOPDON TC001 camera and processed entirely on an NVIDIA Jetson Orin Nano. A YOLO-based detector localizes the nostril region in every even frame (stride = 2) to reduce the computation load, while a Kalman filter predicts the ROI position on skipped frames to maintain spatial continuity and suppress motion jitter. From the stabilized ROI, a temperature-based breathing signal is extracted and analyzed through an adaptive median-MAD hysteresis algorithm that dynamically adjusts to signal amplitude and noise variations for breathing phase detection. Respiratory rate (RR) is computed from inter-breath intervals (IBI) validated within physiological constraints. (3) Results: Ten healthy subjects participated in six experimental conditions including resting, paced breathing, speech, off-axis yaw, posture (supine), and distance variations up to 2.0 m. Across these conditions, the system attained a MAE of 0.57±0.36 BPM and an RMSE of 0.64±0.42 BPM, demonstrating stable accuracy under motion and thermal drift. Compared with peak-based and FFT spectral baselines, the proposed method reduced errors by a large margin across all conditions. (4) Conclusions: The findings confirm that accurate and robust respiratory-rate estimation can be achieved using a low-resolution thermal sensor running entirely on an embedded edge device. The combination of YOLO-based nostril detector, Kalman ROI prediction, and adaptive MAD-hysteresis phase that self-adjusts to signal variability provides a compact, efficient, and privacy-preserving solution for non-invasive vital-sign monitoring in real-world environments.