Treffer: Assessment of ChatGPT-5 as an Artificial Intelligence Tool for Exploring Emerging Dimensions of Clinical Simulation: A Proof-of-concept Study.

Title:
Assessment of ChatGPT-5 as an Artificial Intelligence Tool for Exploring Emerging Dimensions of Clinical Simulation: A Proof-of-concept Study.
Authors:
Rios-Garcia W; Research Network on Digital Health, Artificial Intelligence, and Education (NET-IA WORLD), Lima, Peru. wagner16rg@gmail.com.; Hospital San Juan de Dios de Pisco, Pisco, Perú. wagner16rg@gmail.com., Silva-Jiménez S; Facultad de Ciencias Médicas, Universidad de Cuenca, Cuenca, Ecuador.; Asociación Científica de Estudiantes de Medicina de la Universidad de Cuenca (ASOCEM-UCuenca), Cuenca, Ecuador., Gálvez-Rodríguez E; Universidad Nacional de Trujillo, Trujillo, Perú., Alberca-Naira Y; Escuela de Medicina, Universidad Nacional de Piura, Piura, 20002, Perú., Via-Y-Rada-Torres AD; Facultad de Medicina, Universidad Científica del Sur, Lima, Perú., Rios-Garcia AA; Research Network on Digital Health, Artificial Intelligence, and Education (NET-IA WORLD), Lima, Peru.
Source:
Journal of medical systems [J Med Syst] 2026 Jan 09; Vol. 50 (1), pp. 6. Date of Electronic Publication: 2026 Jan 09.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7806056 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-689X (Electronic) Linking ISSN: 01485598 NLM ISO Abbreviation: J Med Syst Subsets: MEDLINE
Imprint Name(s):
Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
References:
Issenberg SB, McGaghie WC, Petrusa ER, Lee Gordon D, Scalese RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27:10–28. https://doi.org/10.1080/01421590500046924. (PMID: 10.1080/0142159050004692416147767)
McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003–2009. Med Educ. 2010;44:50–63. https://doi.org/10.1111/j.1365-2923.2009.03547.x. (PMID: 10.1111/j.1365-2923.2009.03547.x20078756)
Cook DA, Brydges R, Hamstra SJ, Zendejas B, Szostek JH, Wang AT, et al. Comparative effectiveness of technology-enhanced simulation versus other instructional methods: a systematic review and meta-analysis. Simul Healthc J Soc Simul Healthc. 2012;7:308–20. https://doi.org/10.1097/SIH.0b013e3182614f95. (PMID: 10.1097/SIH.0b013e3182614f95)
Beal MD, Kinnear J, Anderson CR, Martin TD, Wamboldt R, Hooper L. The Effectiveness of Medical Simulation in Teaching Medical Students Critical Care Medicine: A Systematic Review and Meta-Analysis. Simul Healthc J Soc Simul Healthc. 2017;12:104–16. https://doi.org/10.1097/SIH.0000000000000189. (PMID: 10.1097/SIH.0000000000000189)
Elendu C, Amaechi DC, Okatta AU, Amaechi EC, Elendu TC, Ezeh CP, et al. The impact of simulation-based training in medical education: A review. Medicine (Baltimore). 2024;103:e38813. https://doi.org/10.1097/MD.0000000000038813. (PMID: 10.1097/MD.000000000003881338968472)
Alonso-Peña M, Álvarez Álvarez C. Clinical simulation in health education: a systematic review. Investig Educ En Enfermeria. 2023;41:e08. https://doi.org/10.17533/udea.iee.v41n2e08. (PMID: 10.17533/udea.iee.v41n2e08)
Guinez-Molinos S, Castillo B, Espinoza Carrasco P. Simulación clínica online para estudiantes de ciencias de la salud durante la pandemia de COVID-19. Educ Médica. 2023;24:100843. https://doi.org/10.1016/j.edumed.2023.100843.
Shahrezaei A, Sohani M, Taherkhani S, Zarghami SY. The impact of surgical simulation and training technologies on general surgery education. BMC Med Educ. 2024;24:1297. https://doi.org/10.1186/s12909-024-06299-w. (PMID: 10.1186/s12909-024-06299-w3953820911558898)
Cardoso SA, Suyambu J, Iqbal J, Cortes Jaimes DC, Amin A, Sikto JT, et al. Exploring the Role of Simulation Training in Improving Surgical Skills Among Residents: A Narrative Review. Cureus. 2023;15:e44654. https://doi.org/10.7759/cureus.44654. (PMID: 10.7759/cureus.446543779926310549779)
Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8:e188–94. https://doi.org/10.7861/fhj.2021-0095. (PMID: 10.7861/fhj.2021-0095342861838285156)
Preiksaitis C, Rose C. Opportunities, Challenges, and Future Directions of Generative Artificial Intelligence in Medical Education: Scoping Review. JMIR Med Educ. 2023;9:e48785. https://doi.org/10.2196/48785. (PMID: 10.2196/487853786207910625095)
Beheshti M, Toubal IE, Alaboud K, Almalaysha M, Ogundele OB, Turabieh H, et al. Evaluating the Reliability of ChatGPT for Health-Related Questions: A Systematic Review. Informatics. Multidisciplinary Digital Publishing Institute; 2025;12:9. https://doi.org/10.3390/informatics12010009. (PMID: 10.3390/informatics12010009)
Wu J, Ma Y, Wang J, Xiao M. The Application of ChatGPT in Medicine: A Scoping Review and Bibliometric Analysis. J Multidiscip Healthc. 2024;17:1681–92. https://doi.org/10.2147/JMDH.S463128. (PMID: 10.2147/JMDH.S4631283865067011034560)
Aster A, Laupichler MC, Rockwell-Kollmann T, Masala G, Bala E, Raupach T. ChatGPT and Other Large Language Models in Medical Education — Scoping Literature Review. Med Sci Educ. 2025;35:555–67. https://doi.org/10.1007/s40670-024-02206-6. (PMID: 10.1007/s40670-024-02206-640144083)
Performance of ChatGPT on USMLE: Potential for AI-assisted medical education using large language models. [cited 2025 Nov 16]; https://doi.org/10.1371/journal.pdig.0000198.
Sallam M. ChatGPT Utility in Healthcare Education, Research, and Practice: Systematic Review on the Promising Perspectives and Valid Concerns. Healthcare. 2023;11:887. https://doi.org/10.3390/healthcare11060887. (PMID: 10.3390/healthcare110608873698154410048148)
Hu N, Jiang XQ, Wang YD, Kang YM, Xia Z, Chen HH, et al. Status and perceptions of ChatGPT utilization among medical students: a survey-based study. BMC Med Educ. 2025;25:831. https://doi.org/10.1186/s12909-025-07438-7. (PMID: 10.1186/s12909-025-07438-74046834012135314)
Burney IA, Ahmad N. Artificial Intelligence in Medical Education: A citation-based systematic literature review. J Shifa Tameer-E-Millat Univ. 2022;5:43–53. https://doi.org/10.32593/jstmu/Vol5.Iss1.183. (PMID: 10.32593/jstmu/Vol5.Iss1.183)
Martinez FT, Soto JP, Valenzuela D, González N, Corsi J, Sepúlveda P. Virtual Clinical Simulation for Training Amongst Undergraduate Medical Students: A Pilot Randomised Trial (VIRTUE-Pilot). Cureus. 2023;15:e47527. https://doi.org/10.7759/cureus.47527. (PMID: 10.7759/cureus.475273802229410663973)
Kollerup NK, Johansen SS, Tolsgaard MG, Friis ML, Skov MB, van Berkel N. Clinical needs and preferences for AI-based explanations in clinical simulation training. Behav Inf Technol. 2025;44:954–74. https://doi.org/10.1080/0144929X.2024.2334852. (PMID: 10.1080/0144929X.2024.2334852)
Yang Y, Liu X, Jin Q, Huang F, Lu Z. Unmasking and quantifying racial bias of large language models in medical report generation. Commun Med. 2024;4:176. https://doi.org/10.1038/s43856-024-00601-z. (PMID: 10.1038/s43856-024-00601-z3925662211387737)
Xie Y, Seth I, Rozen WM, Hunter-Smith DJ. Evaluation of the Artificial Intelligence Chatbot on Breast Reconstruction and Its Efficacy in Surgical Research: A Case Study. Aesthetic Plast Surg. 2023;47:2360–9. https://doi.org/10.1007/s00266-023-03443-7. (PMID: 10.1007/s00266-023-03443-73731446610784397)
Lim B, Seth I, Xie Y, Kenney PS, Cuomo R, Rozen WM. Exploring the Unknown: Evaluating ChatGPT’s Performance in Uncovering Novel Aspects of Plastic Surgery and Identifying Areas for Future Innovation. Aesthetic Plast Surg. 2024;48:2580–9. https://doi.org/10.1007/s00266-024-03952-z. (PMID: 10.1007/s00266-024-03952-z3852812911239602)
Presentamos GPT-5 [Internet]. 2025 [cited 2025 Oct 27]. https://openai.com/es-ES/index/introducing-gpt-5/ . Accessed 27 Oct 2025.
Abuabara A, do Nascimento TVPM, Trentini SM, Costa Gonçalves AM, Hueb de Menezes-Oliveira MA, Madalena IR, et al. Evaluating the accuracy of generative artificial intelligence models in dental age estimation based on the Demirjian’s method. Front Dent Med. 2025;6:1634006. https://doi.org/10.3389/fdmed.2025.1634006.
McHugh ML. Interrater reliability: the kappa statistic. Biochem Medica. 2012;22:276–82. (PMID: 10.11613/BM.2012.031)
Shoemaker SJ, Wolf MS, Brach C. Development of the Patient Education Materials Assessment Tool (PEMAT): a new measure of understandability and actionability for print and audiovisual patient information. Patient Educ Couns. 2014;96:395–403. https://doi.org/10.1016/j.pec.2014.05.027. (PMID: 10.1016/j.pec.2014.05.027249731955085258)
Wahr JA, Prager RL, Abernathy JH, Martinez EA, Salas E, Seifert PC, et al. Patient safety in the cardiac operating room: human factors and teamwork: a scientific statement from the American Heart Association. Circulation. 2013;128:1139–69. https://doi.org/10.1161/CIR.0b013e3182a38efa. (PMID: 10.1161/CIR.0b013e3182a38efa23918255)
Gillan SN, Saleh GM. Ophthalmic surgical simulation: a new era. JAMA Ophthalmol. 2013;131:1623–4. https://doi.org/10.1001/jamaophthalmol.2013.1011. (PMID: 10.1001/jamaophthalmol.2013.101124337557)
Neri-Vela R. El origen del uso de simuladores en Medicina. Rev Fac Med UNAM. 2018;60:21–7.
Nurko J, Unzek S, Gitler R, Magaña F, Hurtado D, Padilla L, et al. El simulador «Harvey» de paciente cardiológico. La utilización de simuladores, computadoras y equipo multimedia en el aprendizaje de la cardiología. An Méd Asoc Médica Cent Méd ABC. Medigraphic; 2000;45:134–9.
Caudron O. Former les sages-femmes des campagnes: Madame du Coudray, l’Aunis et la Saintonge (1765–1782). Ecrits Ouest. Société rochelaise d’histoire moderne et contemporaine; 2013;17–28.
McGaghie WC, Issenberg SB, Cohen ER, Barsuk JH, Wayne DB. Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence. Acad Med J Assoc Am Med Coll. 2011;86:706–11. https://doi.org/10.1097/ACM.0b013e318217e119. (PMID: 10.1097/ACM.0b013e318217e119)
Putz F, Kattan E, Maestre JM. Use of clinical simulation to train healthcare teams in conflict management: A scoping review. Enfermeria Clin. 2022;32:21–32. https://doi.org/10.1016/j.enfcle.2021.03.001. (PMID: 10.1016/j.enfcle.2021.03.001)
Seam N, Lee AJ, Vennero M, Emlet L. Simulation Training in the ICU. Chest. 2019;156:1223–33. https://doi.org/10.1016/j.chest.2019.07.011. (PMID: 10.1016/j.chest.2019.07.011313742106945651)
Kuyt K, Mullen M, Fullwood C, Chang TP, Fenwick J, Withey V, et al. The assessment of a manikin-based low-dose, high-frequency cardiac resuscitation quality improvement program in early UK adopter hospitals. Adv Simul Lond Engl. 2021;6:14. https://doi.org/10.1186/s41077-021-00168-y. (PMID: 10.1186/s41077-021-00168-y)
Riancho J, Maestre JM, Moral I del, Riancho JA. Simulación clínica de alto realismo: una experiencia en el pregrado. Educ Médica. Fundación Educación Médica; 2012;15:109–15. (PMID: 10.33588/fem.152.633)
Selman-Álvarez R, Figueroa-Fernández Ú, Cruz-Mackenna E, Jarry C, Escalona G, Corvetto M, et al. Inteligencia artificial en simulación médica: estado actual y proyecciones futuras. Rev Latinoam Simul Clínica. Medigraphic; 2024;5:117–22.
Lateef F. Simulation-based learning: Just like the real thing. J Emerg Trauma Shock. 2010;3:348–52. https://doi.org/10.4103/0974-2700.70743. (PMID: 10.4103/0974-2700.70743210635572966567)
Ayaz O, Ismail FW. Healthcare Simulation: A Key to the Future of Medical Education - A Review. Adv Med Educ Pract. 2022;13:301–8. https://doi.org/10.2147/AMEP.S353777. (PMID: 10.2147/AMEP.S353777354111988994530)
Jiang H, Vimalesvaran S, Wang JK, Lim KB, Mogali SR, Car LT. Virtual Reality in Medical Students’ Education: Scoping Review. JMIR Med Educ. 2022;8:e34860. https://doi.org/10.2196/34860. (PMID: 10.2196/34860351074218851326)
Tang KS, Cheng DL, Mi E, Greenberg PB. Augmented reality in medical education: a systematic review. Can Med Educ J. 2020;11:e81–96. https://doi.org/10.36834/cmej.61705. (PMID: 10.36834/cmej.61705322151467082471)
Sun L, Yin C, Xu Q, Zhao W. Artificial intelligence for healthcare and medical education: a systematic review. Am J Transl Res. 2023;15:4820–8. (PMID: 3756024910408516)
Yu JH, Chang HJ, Kim SS, Park JE, Chung WY, Lee SK, et al. Effects of high-fidelity simulation education on medical students’ anxiety and confidence. PloS One. 2021;16:e0251078. https://doi.org/10.1371/journal.pone.0251078. (PMID: 10.1371/journal.pone.0251078339839838118241)
Meyers L, Mahoney B, Schaffernocker T, Way D, Winfield S, Uribe A, et al. The effect of supplemental high Fidelity simulation training in medical students. BMC Med Educ. 2020;20:421. https://doi.org/10.1186/s12909-020-02322-y. (PMID: 10.1186/s12909-020-02322-y331724507653704)
Raine BE, Kozlowski KA, Fowler CC, Frey JD. Performance of ChatGPT on the Plastic Surgery In-Training Examination. Eplasty. 2024;24:e68. (PMID: 4046392212132409)
Zhang Y, Xie X, Xu Q. ChatGPT in Medical Education: Bibliometric and Visual Analysis. JMIR Med Educ. 2025;11:e72356. https://doi.org/10.2196/72356. (PMID: 10.2196/723564105657212503443)
Gummadi R, Dasari N, Kumar DS, Pindiprolu SKSS. Evaluating the Accuracy of Large Language Model (ChatGPT) in Providing Information on Metastatic Breast Cancer. Adv Pharm Bull. 2024;14:499–503. https://doi.org/10.34172/apb.2024.060. (PMID: 10.34172/apb.2024.0603949426111530873)
Wang C, Li S, Lin N, Zhang X, Han Y, Wang X, et al. Application of Large Language Models in Medical Training Evaluation—Using ChatGPT as a Standardized Patient: Multimetric Assessment. J Med Internet Res. 2025;27:e59435. https://doi.org/10.2196/59435. (PMID: 10.2196/594353974245311736217)
Liu M, Okuhara T, Chang X, Shirabe R, Nishiie Y, Okada H, et al. Performance of ChatGPT Across Different Versions in Medical Licensing Examinations Worldwide: Systematic Review and Meta-Analysis. J Med Internet Res. 2024;26:e60807. https://doi.org/10.2196/60807. (PMID: 10.2196/608073905232411310649)
Knoedler L, Alfertshofer M, Knoedler S, Hoch CC, Funk PF, Cotofana S, et al. Pure Wisdom or Potemkin Villages? A Comparison of ChatGPT 3.5 and ChatGPT 4 on USMLE Step 3 Style Questions: Quantitative Analysis. JMIR Med Educ. 2024;10:e51148. https://doi.org/10.2196/51148. (PMID: 10.2196/511483818078210799278)
Pan G, Ni J. A cross sectional investigation of ChatGPT-like large language models application among medical students in China. BMC Med Educ. 2024;24:908. https://doi.org/10.1186/s12909-024-05871-8. (PMID: 10.1186/s12909-024-05871-83918002311342543)
McNamara MA, Hill BG, Schilling PL. The Challenges of Using ChatGPT for Clinical Decision Support in Orthopaedic Surgery: A Pilot Study. J Am Acad Orthop Surg. 2025;33:618–22. https://doi.org/10.5435/JAAOS-D-24-01072. (PMID: 10.5435/JAAOS-D-24-0107240153611)
Peralta Ramirez AA, Trujillo López S, Navarro Armendariz GA, De la Torre Othón SA, Sierra Cervantes MR, Medina Aguirre JA. Clinical Simulation with ChatGpt: A Revolution in Medical Education? J CME. 2025;14:2525615. https://doi.org/10.1080/28338073.2025.2525615. (PMID: 10.1080/28338073.2025.25256154058961212207779)
Ganicho J, Carlos M, Cristóvão G, Cruz C, Leal M, Garrote AR, et al. Use of ChatGPT in HIV Infection Counselling and Literacy. Acta Med Port. 2025;38:385–92. https://doi.org/10.20344/amp.22805. (PMID: 10.20344/amp.2280540580431)
Wojcieszek A, Kurowska A, Wróbel A, Bodys-Cupak I, Kamińska A, Majda A. Analysis of high-fidelity simulation effects and their connection with educational practices in early nursing education. BMC Nurs. 2025;24:457. https://doi.org/10.1186/s12912-025-03077-x. (PMID: 10.1186/s12912-025-03077-x4027532312023673)
Mujamammi AH, Alqahtani SA, Alqaidi FA, Alharbi BA, Alsubaie KM, Alhaisoni FE, et al. Evaluation of Medical Students’ Satisfaction With Using a Simulation-Based Learning Program as a Method for Clinical Teaching. Cureus. 2024;16:e59364. https://doi.org/10.7759/cureus.59364. (PMID: 10.7759/cureus.593643881746011137646)
Mistry D, Brock CA, Lindsey T. The Present and Future of Virtual Reality in Medical Education: A Narrative Review. Cureus. 2023;15:e51124. https://doi.org/10.7759/cureus.51124. (PMID: 10.7759/cureus.511243827490710810257)
Chang A-H, Lin P-C, Lin P-C, Lin Y-C, Kabasawa Y, Lin C-Y, et al. Effectiveness of Virtual Reality-Based Training on Oral Healthcare for Disabled Elderly Persons: A Randomized Controlled Trial. J Pers Med. 2022;12:218. https://doi.org/10.3390/jpm12020218. (PMID: 10.3390/jpm12020218352077068879228)
Brown WJ, Tortorella RAW. Hybrid medical simulation – a systematic literature review. Smart Learn Environ. 2020;7:16. https://doi.org/10.1186/s40561-020-00127-6. (PMID: 10.1186/s40561-020-00127-6)
Hamilton A. Artificial Intelligence and Healthcare Simulation: The Shifting Landscape of Medical Education. Cureus. 2024;16:e59747. https://doi.org/10.7759/cureus.59747. (PMID: 10.7759/cureus.597473884099311152357)
Ng C, Primiani N, Orchanian-Cheff A. Rapid Cycle Deliberate Practice in Healthcare Simulation: a Scoping Review. Med Sci Educ. 2021;31:2105–20. https://doi.org/10.1007/s40670-021-01446-0. (PMID: 10.1007/s40670-021-01446-0349505338651942)
Taras J, Everett T. Rapid Cycle Deliberate Practice in Medical Education - a Systematic Review. Cureus. 2017;9:e1180. https://doi.org/10.7759/cureus.1180. (PMID: 10.7759/cureus.1180285401425441688)
Wickramasinghe D, Vincent J. The use of deliberate practice in simulation-based surgical training for laparoscopic surgery - a systematic review. BMC Med Educ. 2025;25:1047. https://doi.org/10.1186/s12909-025-07613-w. (PMID: 10.1186/s12909-025-07613-w4066023012257738)
Pottle J. Virtual reality and the transformation of medical education. Future Healthc J. 2019;6:181–5. https://doi.org/10.7861/fhj.2019-0036. (PMID: 10.7861/fhj.2019-0036316605226798020)
Duncan C, Mcculloh I. Unmasking Bias in Chat GPT Responses. Proc 2023 IEEEACM Int Conf Adv Soc Netw Anal Min [Internet]. New York, NY, USA: Association for Computing Machinery; 2024 [cited 2025 Oct 27]. p. 687–91. https://doi.org/10.1145/3625007.3627484.
Ho JQH, Hartanto A, Koh A, Majeed NM. Gender biases within Artificial Intelligence and ChatGPT: Evidence, Sources of Biases and Solutions. Comput Hum Behav Artif Hum. 2025;4:100145. https://doi.org/10.1016/j.chbah.2025.100145. (PMID: 10.1016/j.chbah.2025.100145)
Walters WH, Wilder EI. Fabrication and errors in the bibliographic citations generated by ChatGPT. Sci Rep. 2023;13:14045. https://doi.org/10.1038/s41598-023-41032-5. (PMID: 10.1038/s41598-023-41032-53767950310484980)
Chelli M, Descamps J, Lavoué V, Trojani C, Azar M, Deckert M, et al. Hallucination Rates and Reference Accuracy of ChatGPT and Bard for Systematic Reviews: Comparative Analysis. J Med Internet Res. 2024;26:e53164. https://doi.org/10.2196/53164. (PMID: 10.2196/531643877613011153973)
Roitsch CM, Hagan JL, Patricia KE, Jain S, Chen X, Arnold JL, et al. Effects of Team Size and a Decision Support Tool on Healthcare Providers’ Workloads in Simulated Neonatal Resuscitation: A Randomized Trial. Simul Healthc J Soc Simul Healthc. 2021;16:254–60. https://doi.org/10.1097/SIH.0000000000000475. (PMID: 10.1097/SIH.0000000000000475)
Yucel C, Hawley G, Terzioglu F, Bogossian F. The Effectiveness of Simulation-Based Team Training in Obstetrics Emergencies for Improving Technical Skills: A Systematic Review. Simul Healthc J Soc Simul Healthc. 2020;15:98–105. https://doi.org/10.1097/SIH.0000000000000416. (PMID: 10.1097/SIH.0000000000000416)
Contributed Indexing:
Keywords: Artificial intelligence (MeSH); Chatbot; Education; Medical; ChatGPT
Entry Date(s):
Date Created: 20260108 Date Completed: 20260108 Latest Revision: 20260108
Update Code:
20260109
DOI:
10.1007/s10916-025-02334-5
PMID:
41507587
Database:
MEDLINE

Weitere Informationen

Artificial intelligence (AI) and large language models (LLMs) such as ChatGPT-5 are increasingly applied in medical education. However, their potential role in clinical simulation remains largely unexplored. This descriptive proof-of-concept study aimed to examine ChatGPT-5's ability to synthesize and generate educational content related to clinical simulation, focusing on the coherence, factual accuracy, and understandability of its outputs. Seven exploratory questions covering conceptual, historical, and technological aspects of clinical simulation were submitted to ChatGPT-5. Each query was regenerated three times to assess consistency. Responses were independently evaluated by multiple reviewers using a five-point Likert scale for content quality and accuracy, and the Patient Education Materials Assessment Tool (PEMAT) for understandability. Authenticity of AI-generated references was verified through PubMed and Google Scholar. ChatGPT-5 produced coherent and organized responses reflecting major milestones and trends in clinical simulation. Approximately 80% of cited references were verifiable, while some inconsistencies indicated residual fabrication. The average agreement score for accuracy and coherence was 4 ("agree"), suggesting generally acceptable quality. PEMAT analysis showed that content was structured and clear but occasionally used complex terminology, limiting accessibility. Within the exploratory scope of this proof-of-concept study, ChatGPT-5 demonstrated potential as a supportive tool for synthesizing information about clinical simulation. Nonetheless, interpretive depth, citation reliability, and pedagogical adaptation require further refinement. Future research should assess the integration of LLMs into immersive simulation environments under robust ethical and educational frameworks.
(© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Ethics Declarations. Ethical Approval: Not applicable. Consent to Participate: We have not worked with human participants. Competing Interests: The authors declare no competing interests.