Treffer: A Guide to Bayesian Optimization in Bioprocess Engineering.
Original Publication: New York, Wiley.
Agnihotri, A., and N. Batra. 2020. “Exploring Bayesian Optimization.” Distill 5, no. 5. https://doi.org/10.23915/distill.00026.
Ament, S., S. Daulton, D. Eriksson, M. Balandat, and E. Bakshy. 2023. “Unexpected Improvements to Expected Improvement for Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.2310.20708.
Balandat, M., B. Karrer, D. Jiang, et al. 2020. “BoTorch: A Framework for Efficient Monte‐Carlo Bayesian Optimization.” In Advances in Neural Information Processing Systems, 33, 21524–21538. Curran Associates, Inc.
Binois, M., and N. Wycoff. 2021. “A Survey on High‐Dimensional Gaussian Process Modeling With Application to Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.2111.05040.
Biswas, A., Y. Liu, N. Creange, et al. 2024. “A Dynamic Bayesian Optimized Active Recommender System for Curiosity‐Driven Partially Human‐in‐the‐Loop Automated Experiments.” npj Computational Materials 10, no. 1: 29.
Bonilla, E. V., K. Chai, and C. Williams. 2007. “Multi‐Task Gaussian Process Prediction.” In Advances in Neural Information Processing Systems, Vol. 20, 153–160. Curran Associates, Inc.
Burt, S. M., T. J. N. Carter, and L. J. Kricka. 1979. “Thermal Characteristics of Microtitre Plates Used in Immunological Assays.” Journal of Immunological Methods 31, no. 3: 231–236.
Caraus, I., B. Mazoure, R. Nadon, and V. Makarenkov. 2017. “Detecting and Removing Multiplicative Spatial Bias in High‐Throughput Screening Technologies.” Bioinformatics 33, no. 20: 3258–3267.
Cheon, M., J. H. Lee, D.‐Y. Koh, and C. Tsay. 2024. “EARL‐BO: Reinforcement Learning for Multi‐Step Lookahead, High‐Dimensional Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.2411.00171.
Claes, E., T. Heck, K. Coddens, M. Sonnaert, J. Schrooten, and J. Verwaeren. 2024. “Bayesian Cell Therapy Process Optimization.” Biotechnology and Bioengineering 121, no. 5: 1569–1582.
Cosenza, Z., R. Astudillo, P. I. Frazier, K. Baar, and D. E. Block. 2022. “Multi‐Information Source Bayesian Optimization of Culture Media for Cellular Agriculture.” Biotechnology and Bioengineering 119, no. 9: 2447–2458.
Cosenza, Z., D. E. Block, K. Baar, and X. Chen. 2023. “Multi‐Objective Bayesian Algorithm Automatically Discovers Low‐Cost High‐Growth Serum‐Free Media for Cellular Agriculture Application.” Engineering in Life Sciences 23, no. 8: e2300005.
Coutinho, J. P., I. Castillo, and M. S. Reis. 2024. “Human‐in‐the‐Loop Controller Tuning Using Preferential Bayesian Optimization.” IFAC‐PapersOnLine 58, no. 14: 13–18.
Dai, Z., Q. P. Nguyen, S. S. Tay, et al. 2023. “Batch Bayesian Optimization for Replicable Experimental Design.” arXiv. https://doi.org/10.48550/arXiv.2311.01195.
Daulton, S., X. Wan, D. Eriksson, M. Balandat, M. A. Osborne, and E. Bakshy. 2022. “Bayesian Optimization Over Discrete and Mixed Spaces via Probabilistic Reparameterization.” arXiv. https://doi.org/10.48550/arXiv.2210.10199.
De Luca, R., G. Costa, H. Narayanan, et al. 2023. “Comparison of Strategies for Iterative Model‐Based Upstream Bioprocess Development With Single and Parallel Reactor Set‐Ups.” Biochemical Engineering Journal 191: 108813.
Deshwal, A., C. M. Simon, and J. R. Doppa. 2021. “Bayesian Optimization of Nanoporous Materials.” Molecular Systems Design & Engineering 6, no. 12: 1066–1086.
Diwale, S., M. K. Eisner, C. Carpenter, W. Sun, G. C. Rutledge, and R. D. Braatz. 2022. “Bayesian Optimization for Material Discovery Processes With Noise.” Molecular Systems Design & Engineering 7, no. 6: 622–636.
Dunie, M. 2017. “The Importance of Research Data Management: The Value of Electronic Laboratory Notebooks in the Management of Data Integrity and Data Availability.” Information Services & Use 37, no. 3: 355–359.
Dürholt, J. P., T. S. Asche, J. Kleinekorte, et al. 2024. “BoFire: Bayesian Optimization Framework Intended for Real Experiments.” arXiv. https://doi.org/10.48550/arXiv.2408.05040.
Duvenaud, D. K., D. Maclaurin, J. Iparraguirre, et al. 2015. “Convolutional Networks on Graphs for Learning Molecular Fingerprints.” In Advances in Neural Information Processing Systems, Vol. 28, 2224–2232. Curran Associates, Inc.
Eriksson, D., and M. Jankowiak. 2021. “High‐Dimensional Bayesian Optimization With Sparse Axis‐Aligned Subspaces.” arxiv. https://doi.org/10.48550/arXiv.2103.00349.
Eriksson, D., M. Pearce, J. R. Gardner, R. Turner, and M. Poloczek. 2019. “Scalable Global Optimization via Local Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.1910.01739.
Fitzner, M., A. Šošić, A. V. Hopp, et al. 2025. “BayBE: A Bayesian Back End for Experimental Planning in the Low‐to‐no‐Data Regime.” Digital Discovery 8: 1991–2000.
Folch, J. P., R. M. Lee, B. Shafei, et al. 2023. “Combining Multi‐Fidelity Modelling and Asynchronous Batch Bayesian Optimization.” Computers & Chemical Engineering 172: 108194.
Folch, J. P., C. Tsay, R. M. Lee, et al. 2024. “Transition Constrained Bayesian Optimization via Markov Decision Processes.” arXiv. https://doi.org/10.48550/arXiv.2402.08406.
Forrester, A. I., A. Sóbester, and A. J. Keane. 2007. “Multi‐Fidelity Optimization via Surrogate Modelling.” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 463, no. 2088: 3251–3269.
Frazier, P. I., and J. Wang. 2016. “Bayesian Optimization for Materials Design.” In Information Science for Materials Discovery and Design, edited by T. Lookman, F. J. Alexander, and K. Rajan, Vol. 225, 45–75. Springer International Publishing.
Freier, L., J. Hemmerich, K. Schöler, W. Wiechert, M. Oldiges, and E. Von Lieres. 2016. “Framework for Kriging‐Based Iterative Experimental Analysis and Design: Optimization of Secretory Protein Production in Corynebacterium glutamicum.” Engineering in Life Sciences 16, no. 6: 538–549.
Freier, L., and E. Von Lieres. 2017. “Multi‐Objective Global Optimization (MOGO): Algorithm and Case Study in Gradient Elution Chromatography.” Biotechnology Journal 12, no. 7: 1600613.
Gardner, J. R., G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. 2018. “GPyTorch: Blackbox Matrix‐Matrix Gaussian Process Inference With GPU Acceleration.” arXiv. https://doi.org/10.48550/arXiv.1809.11165.
Garnett, R. 2023. Bayesian Optimization, 1st ed. Cambridge University Press.
Garrido‐Merchán, E. C., and D. Hernández‐Lobato. 2020. “Dealing With Categorical and Integer‐Valued Variables in Bayesian Optimization With Gaussian Processes.” Neurocomputing 380: 20–35.
Georgiou, A., D. Jungen, L. Kaven, et al. 2025. “Deterministic Global Optimization of the Acquisition Function in Bayesian Optimization: To Do or Not To Do?.” arXiv. https://doi.org/10.48550/arXiv.2503.03625.
Gisperg, F., R. Klausser, M. Elshazly, J. Kopp, E. P. Brichtová, and O. Spadiut. 2025. “Bayesian Optimization in Bioprocess Engineering–Where Do We Stand Today?” Biotechnology and Bioengineering 122, no. 6: 1313–1325.
Goh, W. W. B., W. Wang, and L. Wong. 2017. “Why Batch Effects Matter in Omics Data, and How to Avoid Them.” Trends in Biotechnology 35, no. 6: 498–507.
Gómez‐Bombarelli, R., J. N. Wei, D. Duvenaud, et al. 2018. “Automatic Chemical Design Using a Data‐Driven Continuous Representation of Molecules.” ACS Central Science 4, no. 2: 268–276.
Gonzalez, J., Z. Dai, A. Damianou, and N. D. Lawrence. 2017. “Preferential Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.1704.03651.
Gonzalez, J., Z. Dai, P. Hennig, and N. Lawrence. 2016. “Batch Bayesian Optimization via Local Penalization.” In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 648–657. PMLR.
González, L. D., and V. M. Zavala. 2023. “New Paradigms for Exploiting Parallel Experiments in Bayesian Optimization.” Computers & Chemical Engineering 170: 108110.
Görtler, J., R. Kehlbeck, and O. Deussen. 2019. “A Visual Exploration of Gaussian Processes.” Distill 4, no. 4. https://doi.org/10.23915/distill.00017.
Greenhill, S., S. Rana, S. Gupta, P. Vellanki, and S. Venkatesh. 2020. “Bayesian Optimization for Adaptive Experimental Design: A Review.” IEEE Access 8: 13937–13948.
Greif, L., N. Hübschle, A. Kimmig, S. Kreuzwieser, A. Martenne, and J. Ovtcharova. 2025. “Structured Sampling Strategies in Bayesian Optimization: Evaluation in Mathematical and Real‐World Scenarios.” Journal of Intelligent Manufacturing: 1–31.
Griffiths, R.‐R., and J. M. Hernández‐Lobato. 2020. “Constrained Bayesian Optimization for Automatic Chemical Design Using Variational Autoencoders.” Chemical Science 11, no. 2: 577–586.
Han, W., and L. Li. 2022. “Evaluating and Minimizing Batch Effects in Metabolomics.” Mass Spectrometry Reviews 41, no. 3: 421–442.
Harrison, R. O., and B. D. Hammock. 1988. “Location Dependent Biases in Automatic 96‐Well Microplate Readers.” Journal of Association of Official Analytical Chemists 71, no. 5: 981–987.
Head, T., M. Kumar, H. Nahrstaedt, G. Louppe, and I. Shcherbatyi. 2021. Scikit‐Optimize/Scikit‐Optimize. Zenodo.
Helleckes, L. M., K. Küsters, C. Wagner, et al. 2024. “High‐Throughput Screening of Catalytically Active Inclusion Bodies Using Laboratory Automation and Bayesian Optimization.” Microbial Cell Factories 23, no. 1: 67.
Helleckes, L. M., C. Müller, T. Griesbach, et al. 2023. “Explore or Exploit? A Model‐Based Screening Strategy for PETase Secretion by Corynebacterium glutamicum.” Biotechnology and Bioengineering 120, no. 1: 139–153.
Helleckes, L. M., M. Osthege, W. Wiechert, E. von Lieres, and M. Oldiges. 2022. “Bayesian Calibration, Process Modeling and Uncertainty Quantification in Biotechnology.” PLOS Computational Biology 18, no. 3: e1009223.
Helleckes, L. M., C. Wirnsperger, J. Polak, G. Guillén‐Gosálbez, A. Butté, and M. Von Stosch. 2024. “Novel Calibration Design Improves Knowledge Transfer Across Products for the Characterization of Pharmaceutical Bioprocesses.” Biotechnology Journal 19, no. 7: 2400080.
Hernandez‐Lobato, D., J. Hernandez‐Lobato, A. Shah, and R. Adams. 2016. “Predictive Entropy Search for Multi‐Objective Bayesian Optimization.” In Proceedings of the 33rd International Conference on Machine Learning, 1492–1501. PMLR.
Hernández‐Lobato, J. M., M. W. Hoffman, and Z. Ghahramani. 2014. “Predictive Entropy Search for Efficient Global Optimization of Black‐Box Functions.” arXiv. https://doi.org/10.48550/arXiv.1406.2541.
Hernández Rodríguez, T., A. Sekulic, M. Lange‐Hegermann, and B. Frahm. 2022. “Designing Robust Biotechnological Processes Regarding Variabilities Using Multi‐Objective Optimization Applied to a Biopharmaceutical Seed Train Design.” Processes 10, no. 5: 883.
Hu, R., L. Fu, Y. Chen, J. Chen, Y. Qiao, and T. Si. 2023. “Protein Engineering via Bayesian Optimization‐Guided Evolutionary Algorithm and Robotic Experiments.” Briefings in Bioinformatics 24, no. 1: bbac570.
Hucka, M., A. Finney, H. M. Sauro, et al. 2003. “The Systems Biology Markup Language (SBML): A Medium for Representation and Exchange of Biochemical Network Models.” Bioinformatics 19, no. 4: 524–531.
Hutter, C., M. Von Stosch, M. N. Cruz Bournazou, and A. Butté. 2021. “Knowledge Transfer Across Cell Lines Using Hybrid Gaussian Process Models With Entity Embedding Vectors.” Biotechnology and Bioengineering 118, no. 11: 4389–4401.
Hvarfner, C., E. O. Hellsten, and L. Nardi. 2024. “Vanilla Bayesian Optimization Performs Great in High Dimensions.” In Proceedings of the 41st International Conference on Machine Learning, Proceedings of Machine Learning Research, 20793–20817. PMLR.
Jäpel, R. C., and J. F. Buyel. 2022. “Bayesian Optimization Using Multiple Directional Objective Functions Allows the Rapid Inverse Fitting of Parameters for Chromatography Simulations.” Journal of Chromatography A 1679: 463408.
Jessop‐Fabre, M. M., and N. Sonnenschein. 2019. “Improving Reproducibility in Synthetic Biology.” Frontiers in Bioengineering and Biotechnology 7: 18.
Jin, Y., and P. V. Kumar. 2023. “Bayesian Optimisation for Efficient Material Discovery: A Mini Review.” Nanoscale 15, no. 26: 10975–10984.
Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization of Expensive Black‐Box Functions.” Journal of Global Optimization 13, no. 4: 455–492.
Jumper, J., R. Evans, A. Pritzel, et al. 2021. “Highly Accurate Protein Structure Prediction With AlphaFold.” Nature 596, no. 7873: 583–589.
Kanda, G. N., T. Tsuzuki, M. Terada, et al. 2022. “Robotic Search for Optimal Cell Culture in Regenerative Medicine.” eLife 11: e77007.
Kandasamy, K., A. Krishnamurthy, J. Schneider, and B. Poczos. 2018. “Parallelised Bayesian Optimisation via Thompson Sampling.” In Proceedings of the Twenty‐First International Conference on Artificial Intelligence and Statistics, 133–142. PMLR.
Keating, S. M., D. Waltemath, M. König, et al. 2020. “SBML Level 3: An Extensible Format for the Exchange and Reuse of Biological Models.” Molecular Systems Biology 16, no. 8: e9110.
Kobalczyk, K., Z. J. Lin, B. Letham, Z. Zhao, M. Balandat, and E. Bakshy. 2025. “LILO: Bayesian Optimization With Interactive Natural Language Feedback.” arXiv. https://doi.org/10.48550/arXiv.2510.17671.
Kreyling, J., A. H. Schweiger, M. Bahn, et al. 2018. “To Replicate, or Not to Replicate ‐ That Is the Question: How to Tackle Nonlinear Responses in Ecological Experiments.” Ecology Letters 21, no. 11: 1629–1638.
Kricka, L. J., T. J. Carter, S. M. Burt, et al. 1980. “Variability in the Adsorption Properties of Microtitre Plates Used as Solid Supports in Enzyme Immunoassay.” Clinical Chemistry 26, no. 6: 741–744.
Krige, D. G. 1951. “A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand.” PhD thesis, University of the Witwatersrand.
Kushner, H. J. 1962. “A Versatile Stochastic Model of a Function of Unknown and Time Varying Form.” Journal of Mathematical Analysis and Applications 5, no. 1: 150–167.
Kushner, H. J. 1964. “A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise.” Journal of Basic Engineering 86, no. 1: 97–106.
Kwon, Y., D. Lee, J. W. Kim, Y.‐S. Choi, and S. Kim. 2022. “Exploring Optimal Reaction Conditions Guided by Graph Neural Networks and Bayesian Optimization.” ACS Omega 7, no. 49: 44939–44950.
Lapierre, F. M., P. Mattaliano, D. Raith, M. Castillo‐Cota, J. Bermeitinger, and R. Huber. 2025. “Multi‐Cycle High‐Throughput Growth Media Optimization Using Batch Bayesian Optimization.” Journal of Chemical Technology & Biotechnology 100, no. 8: 1525–1746.
Lauterbach, S., H. Dienhart, J. Range, et al. 2023. “EnzymeML: Seamless Data Flow and Modeling of Enzymatic Data.” Nature Methods 20: 400–402.
Leek, J. T., R. B. Scharpf, H. C. Bravo, et al. 2010. “Tackling the Widespread and Critical Impact of Batch Effects in High‐Throughput Data.” Nature Reviews Genetics 11, no. 10: 733–739.
Liang, Q., A. E. Gongora, Z. Ren, et al. 2021. “Benchmarking the Performance of Bayesian Optimization Across Multiple Experimental Materials Science Domains.” npj Computational Materials 7, no. 1: 1–10.
Liu, T., N. Astorga, N. Seedat, and M. van der Schaar. 2024. “Large Language Models to Enhance Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.2402.03921.
Malzacher, S., D. Meißner, J. Range, et al. 2024. “The STRENDA Biocatalysis Guidelines for Cataloguing Metadata.” Nature Catalysis 7, no. 12: 1245–1249.
Marchant, R., and F. Ramos. 2012. “Bayesian Optimisation for Intelligent Environmental Monitoring.” In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2242–2249. IEEE.
Martens, A., M. Neufang, A. Butté, M. von Stosch, A. d. R. Chanona, and L. M. Helleckes. 2025. “Holistic Bioprocess Development Across Scales Using Multi‐Fidelity Batch Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.2508.10970.
Matheron, G. 1963. “Principles of Geostatistics.” Economic Geology 58, no. 8: 1246–1266.
Mione, F. M., M. F. Luna, L. Kaspersetz, P. Neubauer, E. C. Martinez, and M. N. Cruz Bournazou. 2025. “A Property Graph Schema for Automated Metadata Capture, Reproducibility and Knowledge Discovery in High‐Throughput Bioprocess Development.” Digital Discovery 4: 2401–2422.
Močkus, J. 1975. “On Bayesian Methods for Seeking the Extremum.” In Optimization Techniques IFIP Technical Conference Novosibirsk, July 1–7, 1974, edited by G. Goos, J. Hartmanis, P. Brinch Hansen, et al., Vol. 27, 400–404. Springer.
Močkus, J. 1989. Bayesian Approach to Global Optimization: Theory and Applications. Mathematics and Its Applications, Vol. 37. Springer.
Montgomery, D. C. 2020. Design and Analysis of Experiments, 10th ed. Wiley.
Morschett, H., L. Freier, J. Rohde, W. Wiechert, E. Von Lieres, and M. Oldiges. 2017. “A Framework for Accelerated Phototrophic Bioprocess Development: Integration of Parallelized Microscale Cultivation, Laboratory Automation and Kriging‐Assisted Experimental Design.” Biotechnology for Biofuels 10, no. 1: 26.
Moss, H., D. Leslie, D. Beck, J. González, and P. Rayson. 2020. “BOSS: Bayesian Optimization Over String Spaces.” In Advances in Neural Information Processing Systems, Vol. 33, 15476–15486. Curran Associates, Inc.
Moss, H. B., D. S. Leslie, J. Gonzalez, and P. Rayson. 2021. “GIBBON: General‐Purpose Information‐Based Bayesian Optimisation.” Journal of Machine Learning Research 22, no. 235: 1–49.
Narayanan, H., F. Dingfelder, I. Condado Morales, et al. 2021. “Design of Biopharmaceutical Formulations Accelerated by Machine Learning.” Molecular Pharmaceutics 18, no. 10: 3843–3853.
Narayanan, H., J. A. Hinckley, R. Barry, et al. 2025. “Accelerating Cell Culture Media Development Using Bayesian Optimization‐Based Iterative Experimental Design.” Nature Communications 16, no. 1: 6055.
Nava, E., M. Mutný, and A. Krause. 2022. “Diversified Sampling for Batched Bayesian Optimization With Determinantal Point Processes.” arXiv. https://doi.org/10.48550/arXiv.2110.11665.
Negoescu, D. M., P. I. Frazier, and W. B. Powell. 2011. “The Knowledge‐Gradient Algorithm for Sequencing Experiments in Drug Discovery.” INFORMS Journal on Computing 23, no. 3: 346–363.
Ortmann, L., D. Shi, E. Dassau, F. J. Doyle, B. J. Misgeld, and S. Leonhardt. 2019. “Automated Insulin Delivery for Type 1 Diabetes Mellitus Patients Using Gaussian Process‐Based Model Predictive Control.” In 2019 American Control Conference (ACC), 4118–4123. IEEE.
Pandi, A., C. Diehl, A. Yazdizadeh Kharrazi, et al. 2022. “A Versatile Active Learning Workflow for Optimization of Genetic and Metabolic Networks.” Nature Communications 13, no. 1: 3876.
Pandya, K., C. A. Ray, L. Brunner, J. Wang, J. W. Lee, and B. DeSilva. 2010. “Strategies to Minimize Variability and Bias Associated With Manual Pipetting in Ligand Binding Assays to Assure Data Quality of Protein Therapeutic Quantification.” Journal of Pharmaceutical and Biomedical Analysis 53, no. 3: 623–630.
Papenmeier, L., L. Nardi, and M. Poloczek. 2023. “Bounce: Reliable High‐Dimensional Bayesian Optimization for Combinatorial and Mixed Spaces.” arXiv. https://doi.org/10.48550/arXiv.2307.00618.
Park, S., J. Na, M. Kim, and J. M. Lee. 2018. “Multi‐Objective Bayesian Optimization of Chemical Reactor Design Using Computational Fluid Dynamics.” Computers & Chemical Engineering 119: 25–37.
Paulson, J. A., G. Makrygiorgos, and A. Mesbah. 2022. “Adversarially Robust Bayesian Optimization for Efficient AUTO‐TUNING of Generic Control Structures Under Uncertainty.” AIChE Journal 68, no. 6: e17591.
Petsagkourakis, P., B. Chachuat, and E. Antonio Del Rio‐Chanona. 2021. “Safe Real‐Time Optimization Using Multi‐Fidelity Gaussian Processes.” In 2021 60th IEEE Conference on Decision and Control (CDC), 6734–6741. IEEE.
Potthoff, J., P. Tremouilhac, P. Hodapp, B. Neumair, S. Bräse, and N. Jung. 2019. “Procedures for Systematic Capture and Management of Analytical Data in Academia.” Analytica Chimica Acta: X 1: 100007.
Rahimi, A., and B. Recht. 2007. “Random Features for Large‐Scale Kernel Machines.” Advances in Neural Information Processing Systems 20: 1177–1184.
Ranković, B., R.‐R. Griffiths, and P. Schwaller. 2025. “Large Language Models as Uncertainty‐Calibrated Optimizers for Experimental Discovery.” arXiv. https://doi.org/10.48550/arXiv.2504.06265.
Rasmussen, C. E., and C. K. I. Williams. 2006. “Gaussian Processes for Machine Learning.” in Adaptive Computation and Machine Learning. MIT Press.
Romero, P. A., A. Krause, and F. H. Arnold. 2013. “Navigating the Protein Fitness Landscape With Gaussian Processes.” Proceedings of the National Academy of Sciences 110, no. 3: E193–E201. https://doi.org/10.1073/pnas.1215251110.
Rosa, S. S., D. Nunes, L. Antunes, D. M. F. Prazeres, M. P. C. Marques, and A. M. Azevedo. 2022. “Maximizing mRNA Vaccine Production With Bayesian Optimization.” Biotechnology and Bioengineering 119, no. 11: 3127–3139.
Roselle, C., T. Verch, and M. Shank‐Retzlaff. 2016. “Mitigation of Microtiter Plate Positioning Effects Using a Block Randomization Scheme.” Analytical and Bioanalytical Chemistry 408, no. 15: 3969–3979.
Ru, B., A. S. Alvi, V. Nguyen, M. A. Osborne, and S. J. Roberts. 2020. “Bayesian Optimisation Over Multiple Continuous and Categorical Inputs.” arXiv. https://doi.org/10.48550/arXiv.1906.08878.
Ruberg, S. J., F. Beckers, R. Hemmings, et al. 2023. “Application of Bayesian Approaches in Drug Development: Starting a Virtuous Cycle.” Nature Reviews Drug Discovery 22, no. 3: 235–250.
Šaltenis, V. 1971. “On a Method of Multi‐Extremal Optimization.” Automatics and Computers (Avtomatáka á Vychislátelnayya Tekchnika) 3: 33–38.
Sandve, G. K., A. Nekrutenko, J. Taylor, and E. Hovig. 2013. “Ten Simple Rules for Reproducible Computational Research.” PLoS Computational Biology 9, no. 10: e1003285.
Savage, T., N. Basha, J. McDonough, J. Krassowski, O. Matar, and E. A. del Río Chanona. 2024. “Machine Learning‐Assisted Discovery of Flow Reactor Designs.” Nature Chemical Engineering 1, no. 8: 522–531.
Savage, T., N. Basha, J. McDonough, O. K. Matar, and E. A. del Río Chanona. 2023. “Multi‐Fidelity Data‐Driven Design and Analysis of Reactor and Tube Simulations.” Computers & Chemical Engineering 179: 108410.
Savage, T., and E. A. del Río Chanona. 2024. “Human‐Algorithm Collaborative Bayesian Optimization for Engineering Systems.” Computers & Chemical Engineering 189: 108810.
Schonlau, M., and W. J. Welch. 2006. “Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization.” In Screening, edited by A. Dean and S. Lewis, 308–327. Springer‐Verlag.
Shahriari, B., K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. 2016. “Taking the Human Out of the Loop: A Review of Bayesian Optimization.” Proceedings of the IEEE 104, no. 1: 148–175.
Shan, S., and G. G. Wang. 2010. “Survey of Modeling and Optimization Strategies to Solve High‐Dimensional Design Problems With Computationally‐Expensive Black‐Box Functions.” Structural and Multidisciplinary Optimization 41, no. 2: 219–241.
Shields, B. J., J. Stevens, J. Li, et al. 2021. “Bayesian Reaction Optimization as a Tool for Chemical Synthesis.” Nature 590, no. 7844: 89–96.
Siedentop, R., M. Siska, J. Hermes, S. Lütz, E. von Lieres, and K. Rosenthal. 2025. “Avoiding Replicates in Biocatalysis Experiments: Machine Learning for Enzyme Cascade Optimization.” ChemCatChem 17, no. 1: e202400777.
Siska, M., L. Helleckes, and E. Pajak. 2025. Lhelleckes/BO_Empirical_Examples: V0.1.0. Zenodo. https://doi.org/10.5281/zenodo.16755807.
Snoek, J., H. Larochelle, and R. P. Adams. 2012. “Practical Bayesian Optimization of Machine Learning Algorithms.” In Advances in Neural Information Processing Systems, Vol. 25, 2951–2959. Curran Associates, Inc.
Stone, K., Y. Xu, X. Li, A. Vikram, M. Christensen, and K. Felton. 2025. Obsidian: Algorithmic Process Optimization and AI Experiment Design. Merck & Co. Inc.
Taylor, C. J., K. C. Felton, D. Wigh, et al. 2023. “Accelerated Chemical Reaction Optimization Using Multi‐Task Learning.” ACS Central Science 9, no. 5: 957–968.
Thompson, J. C., V. M. Zavala, and O. S. Venturelli. 2023. “Integrating a Tailored Recurrent Neural Network With Bayesian Experimental Design to Optimize Microbial Community Functions.” PLOS Computational Biology 19, no. 9: e1011436.
Tipton, K. F., R. N. Armstrong, B. M. Bakker, et al. 2014. “Standards for Reporting Enzyme Data: The STRENDA Consortium: What It Aims to Do and Why It Should Be Helpful.” Perspectives in Science 1, no. 1–6: 131–137.
Ton, J.‐F., S. Flaxman, D. Sejdinovic, and S. Bhatt. 2018. “Spatial Mapping With Gaussian Processes and Nonstationary Fourier Features.” Spatial Statistics 28: 59–78.
Vincent, A. M., and P. Jidesh. 2023. “An Improved Hyperparameter Optimization Framework for AutoML Systems Using Evolutionary Algorithms.” Scientific Reports 13, no. 1: 4737. https://doi.org/10.1038/s41598‐023‐32027‐3.
von den Eichen, N., M. Osthege, M. Dölle, et al. 2022. “Control of Parallelized Bioreactors II: Probabilistic Quantification of Carboxylic Acid Reductase Activity for Bioprocess Optimization.” Bioprocess and Biosystems Engineering 45, no. 12: 1939–1954.
Wan, X., V. Nguyen, H. Ha, B. Ru, C. Lu, and M. A. Osborne. 2021. “Think Global and Act Local: Bayesian Optimisation Over High‐Dimensional Categorical and Mixed Search Spaces.” arXiv. https://doi.org/10.48550/arXiv.2102.07188.
Wang, J. 2023. “An Intuitive Tutorial to Gaussian Process Regression.” Computing in Science & Engineering 25, no. 4: 4–11.
Wesel, F., and K. Batselier. 2021. “Large‐Scale Learning With Fourier Features and Tensor Decompositions.” arXiv. https://doi.org/10.48550/arXiv.2109.01545.
Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, et al. 2016. “The FAIR Guiding Principles for Scientific Data Management and Stewardship.” Scientific Data 3, no. 1: 160018.
Wilson, A. G., Z. Hu, R. Salakhutdinov, and E. P. Xing. 2016. “Deep Kernel Learning.” In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, 370–378. PMLR.
Wilson, J. T., F. Hutter, and M. P. Deisenroth. 2018. “Maximizing Acquisition Functions for Bayesian Optimization.” arXiv. https://doi.org/10.48550/arXiv.1805.10196.
Yoshida, K., K. Watanabe, T.‐Y. Chiou, and M. Konishi. 2023. “High Throughput Optimization of Medium Composition for Escherichia coli Protein Expression Using Deep Learning and Bayesian Optimization.” Journal of Bioscience and Bioengineering 135, no. 2: 127–133.
Yue, X., and R. A. Kontar. 2020. “Why Non‐Myopic Bayesian Optimization Is Promising and How Far Should We Look‐Ahead? A Study via Rollout.” In Proceedings of Machine Learning Research, 2808–2818. MLResearchPress.
Weitere Informationen
Bayesian optimization has become widely popular across various experimental sciences due to its favorable attributes: it can handle noisy data, perform well with relatively small data sets, and provide adaptive suggestions for sequential experimentation. While still in its infancy, Bayesian optimization has recently gained traction in bioprocess engineering. However, experimentation with biological systems is highly complex and the resulting experimental uncertainty requires specific extensions to classical Bayesian optimization. Moreover, current literature often targets readers with a strong statistical background, limiting its accessibility for practitioners. In light of these developments, this review has two aims: first, to provide an intuitive and practical introduction to Bayesian optimization; and second, to outline promising application areas and open algorithmic challenges, thereby highlighting opportunities for future research in machine learning.
(© 2026 The Author(s). Biotechnology and Bioengineering published by Wiley Periodicals LLC.)