Treffer: Resistive Switching Oxides: Mechanism, Performance, and Device-Algorithm Co-Design for Artificial Intelligence.
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
Y. Ma, Z. Wang, H. Yang, and L. Yang, “Artificial Intelligence Applications in the Development of Autonomous Vehicles: A Survey,” IEEE/CAA Journal of Automatica Sinica 7 (2020): 315–329.
C. M. Brown, “Computer Vision and Natural Constraints,” Science 224 (1984): 1299–1305.
H. Wang, T. Fu, Y. Du, et al., “Scientific Discovery in the Age of Artificial Intelligence,” Nature 620 (2023): 47–60.
K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh, “Machine Learning for Molecular and Materials Science,” Nature 559 (2018): 547–555.
U. K. Patel, A. Anwar, S. Saleem, et al., “Artificial Intelligence as an Emerging Technology in the Current Care of Neurological Disorders,” Journal of Neurology 268 (2021): 1623–1642.
D. E. O'Leary, “Artificial Intelligence and Big Data,” IEEE Intelligent Systems 28 (2013): 96–99.
H. Seok, D. Lee, S. Son, H. Choi, G. Kim, and T. Kim, “Beyond von Neumann Architecture: Brain‐Inspired Artificial Neuromorphic Devices and Integrated Computing,” Advanced Electronic Materials 10 (2024): 2300839.
M. Zhao, B. Gao, J. Tang, H. Qian, and H. Wu, “Reliability of Analog Resistive Switching Memory for Neuromorphic Computing,” Applied Physics Reviews 7 (2020): 011301.
Z. Wang, H. Wu, G. W. Burr, et al., “Resistive Switching Materials for Information Processing,” Nature Reviews Materials 5 (2020): 173–195.
Y. Wu, X. Wang, and W. D. Lu, “Dynamic Resistive Switching Devices for Neuromorphic Computing,” Semiconductor Science and Technology 37 (2021): 024003.
A. Amirsoleimani, F. Alibart, V. Yon, et al., “In‐Memory Vector‐Matrix Multiplication in Monolithic Complementary Metal–Oxide–Semiconductor‐Memristor Integrated Circuits: Design Choices, Challenges, and Perspectives,” Advanced Intelligent Systems 2 (2020): 2000115.
Y. C. Yang, F. Pan, Q. Liu, M. Liu, and F. Zeng, “Fully Room‐Temperature‐Fabricated Nonvolatile Resistive Memory for Ultrafast and High‐Density Memory Application,” Nano Letters 9 (2009): 1636–1643.
Q. Liu, J. Sun, H. Lv, et al., “Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM,” Advanced Materials 24 (2012): 1844–1849.
C.‐Y. Lin, C.‐Y. Wu, C.‐Y. Wu, et al., “Effect of Top Electrode Material on Resistive Switching Properties of $∖hbox{ZrO}_{2}$ Film Memory Devices,” IEEE Electron Device Letters 28 (2007): 366–368.
G.‐S. Park, Y. B. Kim, S. Y. Park, et al., “In Situ Observation of Filamentary Conducting Channels in an Asymmetric Ta2O5−x/TaO2−x Bilayer Structure,” Nature Communications 4 (2013): 2382.
A. Wedig, M. Luebben, D.‐Y. Cho, et al., “Nanoscale Cation Motion in TaOx, HfOx and TiOx Memristive Systems,” Nature Nanotechnology 11 (2016): 67–74.
M.‐J. Lee, G.‐S. Park, D. H. Seo, et al., “Reliable Multivalued Conductance States in TaOx Memristors Through Oxygen Plasma‐Assisted Electrode Deposition with in Situ‐Biased Conductance State Transmission Electron Microscopy Analysis,” ACS Applied Materials & Interfaces 10 (2018): 29757–29765.
B. Grisafe, M. Jerry, J. A. Smith, and S. Datta, “Performance Enhancement of Ag/HfO2 Metal Ion Threshold Switch Cross‐Point Selectors,” IEEE Electron Device Letters 40 (2019): 1602–1605.
C. Zang, B. Li, Y. Sun, et al., “Uniform Self‐rectifying Resistive Random‐access Memory Based on an MXene‐TiO2 Schottky Junction,” Nanoscale Advances 4 (2022): 5062–5069.
Z. Ye, M. Wu, P. Xu, et al., “Self‐rectifying TiOx‐based Memristor With Synaptic Plasticity,” Journal of Materials Science: Materials in Electronics 35 (2024): 1223.
L. Michalas, A. Khiat, S. Stathopoulos, and T. Prodromakis, “Electrical Characteristics of Interfacial Barriers at Metal—TiO2 Contacts,” Journal of Physics D: Applied Physics 51 (2018): 425101.
J.‐H. Ryu and S. Kim, “Artificial Synaptic Characteristics of TiO2/HfO2 Memristor With Self‐Rectifying Switching for Brain‐Inspired Computing,” Chaos, Solitons & Fractals 140 (2020): 110236.
R. Guo, Y. Zhou, L. Wu, et al., “Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering,” ACS Applied Materials & Interfaces 10 (2018): 12862–12869.
J. Jia, J. Li, X. Liu, Y. Oshima, and L. Lei, “Study of the Resistive Switching Properties of YBa2Cu3O7−x/Nb:SrTiO3 Heterostructures,” Materials Science and Engineering: B 314 (2025): 118001.
Y. Wang, X. Shi, K. Zhao, G. Xie, S. Huang, and L. Zhang, “Controllable Resistive Switching in Au/Nb:SrTiO3 Microscopic Schottky Junctions,” Applied Surface Science 364 (2016): 718–725.
J. Li, G. Yang, Y. Wu, W. Zhang, and C. Jia, “Asymmetric Resistive Switching Effect in Au/Nb:SrTiO3 Schottky Junctions,” Physica Status Solidi (a) 215 (2018): 1700912.
Y. Qiao, F. Wang, W. Guo, et al., “Monolayer MoS2 as a Sensitive Probe: Exploring the Resistive Switching Mechanism of MoS2/NSTO Heterostructures,” Journal of Alloys and Compounds 967 (2023): 171712.
W. Y. Yoon, H.‐J. Jin, and W. Jo, “Reconfigurable Dipole‐Induced Resistive Switching of MoS2 Thin Layers on Nb:SrTiO3,” ACS Applied Materials & Interfaces 11 (2019): 46344–46349.
Y. Kalcheim, A. Camjayi, J. Del Valle, P. Salev, M. Rozenberg, and I. K. Schuller, “Non‐thermal Resistive Switching in Mott Insulator Nanowires,” Nature Communications 11 (2020): 2985.
R. Yuan, P. J. Tiw, L. Cai, et al., “A Neuromorphic Physiological Signal Processing System Based on VO2 Memristor for Next‐Generation Human‐Machine Interface,” Nature Communications 14 (2023): 3695.
K. Liu, C. Cheng, J. Suh, et al., “Powerful, Multifunctional Torsional Micromuscles Activated By Phase Transition,” Advanced Materials 26 (2014): 1746–1750.
T. Zhao, Y. Xu, J. Liu, X. Bao, L. Yuan, and D. Gu, “Temperature‐dependent Behavior of VO2‐Based Artificial Neurons,” Applied Physics Letters 125 (2024): 214103.
M. Pattanayak, M. N. F. Hoque, Y.‐C. Ho, W. Li, Z. Fan, and A. A. Bernussi, “Ultrahigh Tunability of Resistive Switching in Strongly Correlated Functional Oxide,” Applied Materials Today 30 (2023): 101642.
S. Kumar, J. P. Strachan, and R. S. Williams, “Chaotic Dynamics in Nanoscale NbO2 Mott Memristors for Analogue Computing,” Nature 548 (2017): 318–321.
P. Chen, X. Zhang, Q. Liu, and M. Liu, “NbO2‐Based Locally Active Memristors: From Physical Mechanisms to Performance Optimization,” Applied Physics A 128 (2022): 1113.
V. Humbert, R. El Hage, G. Krieger, et al., “An Oxygen Vacancy Memristor Ruled by Electron Correlations,” Advanced Science 9 (2022): 2201753.
L. Li, D. Yu, Y. Wei, et al., “A SmNiO3 Memristor With Artificial Synapse Function Properties and the Implementation of Boolean Logic Circuits,” Nanoscale 15 (2023): 7105–7114.
Y. Yuan, R. K. Patel, S. Banik, et al., “Proton Conducting Neuromorphic Materials and Devices,” Chemical Reviews 124 (2024): 9733–9784.
H.‐T. Zhang, T. J. Park, A. N. Islam, et al., “Reconfigurable Perovskite Nickelate Electronics for Artificial Intelligence,” Science 375 (2022): 533–539.
B. Dang, T. Zhang, X. Wu, K. Liu, R. Huang, and Y. Yang, “Reconfigurable In‐Sensor Processing Based on a Multi‐Phototransistor–One‐Memristor Array,” Nature Electronics 7 (2024): 991–1003.
M.‐K. Song, J.‐H. Kang, X. Zhang, et al., “Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems,” ACS Nano 17 (2023): 11994–12039.
T. J. Park, S. Deng, S. Manna, et al., “Complex Oxides for Brain‐Inspired Computing: A Review,” Advanced Materials 35 (2022): 2203352.
R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges,” Advanced Materials 21 (2009): 2632–2663.
E. Carlos, R. Branquinho, R. Martins, A. Kiazadeh, and E. Fortunato, “Recent Progress in Solution‐Based Metal Oxide Resistive Switching Devices,” Advanced Materials 33 (2021): 2004328.
D. Ielmini and H. S. P. Wong, “In‐memory Computing With Resistive Switching Devices,” Nature Electronics 1 (2018): 333–343.
M. Cucchi, S. Abreu, G. Ciccone, D. Brunner, and H. Kleemann, “Hands‐on Reservoir Computing: A Tutorial for Practical Implementation,” Neuromorphic Computing and Engineering 2 (2022): 032002.
D. Querlioz, O. Bichler, P. Dollfus, and C. Gamrat, “Immunity to Device Variations in a Spiking Neural Network with Memristive Nanodevices,” IEEE Transactions on Nanotechnology 12 (2013): 288–295.
S. I. Yi, J. D. Kendall, R. S. Williams, and S. Kumar, “Activity‐difference Training of Deep Neural Networks Using Memristor Crossbars,” Nature Electronics 6 (2023): 45.
A. Gubicza, D. Z. Manrique, L. Pósa, et al., “Asymmetry‐induced Resistive Switching in Ag‐Ag2S‐Ag Memristors Enabling a Simplified Atomic‐scale Memory Design,” Scientific Reports 6 (2016): 30775.
S. Goswami, R. Pramanick, A. Patra, et al., “Decision Trees Within a Molecular Memristor,” Nature 597 (2021): 51–56.
M. Naqi, M. S. Kang, N. liu, et al., “Multilevel Artificial Electronic Synaptic Device of Direct Grown Robust MoS2 Based Memristor Array for in‐memory Deep Neural Network,” npj 2D Materials and Applications 6 (2022): 53.
X. Huang, H. Wu, D. C. Sekar, S. N. Nguyen, K. Wang, and H. Qian, “Optimization of TiN/TaOx/HfO2/TiN RRAM Arrays for Improved Switching and Data Retention,” IEEE International Memory Workshop (2015): 1–4.
Z. Wei, Y. Kanzawa, K. Arita, et al., “Highly Reliable TaOx ReRAM and Direct Evidence of Redox Reaction Mechanism,” IEEE International Electron Devices Meeting (2008): 1–4.
Y. Li, Z. Wang, R. Midya, Q. Xia, and J. J. Yang, “Review of Memristor Devices in Neuromorphic Computing: Materials Sciences and Device Challenges,” Journal of Physics D: Applied Physics 51 (2018): 503002.
K. Sun, J. Chen, and X. Yan, “The Future of Memristors: Materials Engineering and Neural Networks,” Advanced Functional Materials 31 (2020): 2006773.
L. Wang, C. Yang, J. Wen, S. Gai, and Y. Peng, “Overview of Emerging Memristor Families From Resistive Memristor to Spintronic Memristor,” Journal of Materials Science: Materials in Electronics 26 (2015): 4618–4628.
Y. Xiao, B. Jiang, Z. Zhang, et al., “A Review of Memristor: Material and Structure Design, Device Performance, Applications and Prospects,” Science and Technology of Advanced Materials 24 (2023): 2162323.
B. Mohammad, M. A. Jaoude, V. Kumar, et al., “State of the Art of Metal Oxide Memristor Devices,” Nanotechnology Reviews 5 (2016): 311.
J. Y. Chen, C. L. Hsin, C. W. Huang, et al., “Dynamic Evolution of Conducting Nanofilament in Resistive Switching Memories,” Nano Letters 13 (2013): 3671–3677.
A. Sawa, “Resistive Switching in Transition Metal Oxides,” Materials Today 11 (2008): 28–36.
H. W. Chen, M. D. Dong, Y. Hu, et al., “Protonation‐Induced Colossal Chemical Expansion and Property Tuning in NdNiO3 Revealed by Proton Concentration Gradient Thin Films,” Nano Letters 22 (2022): 8983–8990.
K. Yang, Q. X. Duan, Y. H. Wang, T. Zhang, Y. C. Yang, and R. Huang, “Transiently Chaotic Simulated Annealing Based on Intrinsic Nonlinearity of Memristors for Efficient Solution of Optimization Problems,” Science Advances 6 (2020): aba9901.
T. Dalgaty, N. Castellani, C. Turck, K. E. Harabi, D. Querlioz, and E. Vianello, “In Situ Learning Using Intrinsic Memristor Variability via Markov Chain Monte Carlo Sampling,” Nature Electronics 4 (2021): 151–161.
S. Deng, H. Yu, T. J. Park, et al., “Selective Area Doping for Mott Neuromorphic Electronics,” Science Advances 9 (2023): ade4838.
K.‐E. Harabi, T. Hirtzlin, C. Turck, et al., “A Memristor‐Based Bayesian Machine,” Nature Electronics 6 (2022): 52–63.
T. Zhang, M. Hu, M. Z. Ahmed Mia, et al., “Self‐Sensitizable Neuromorphic Device Based on Adaptive Hydrogen Gradient,” Matter 7 (2024): 1799–1816.
F. Zuo, P. Panda, M. Kotiuga, et al., “Habituation Based Synaptic Plasticity and Organismic Learning in a Quantum Perovskite,” Nature Communications 8 (2017): 240.
Y. Liu, C. Ye, K. C. Chang, et al., “A Robust and Low‐Power Bismuth Doped Tin Oxide Memristor Derived From Coaxial Conductive Filaments,” Small 16 (2020): 2004619.
D. Ielmini and R. Waser, Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. (John Wiley & Sons, 2016).
X. Guo, Q. Wang, X. Lv, et al., “SiO2/Ta2O5 Heterojunction ECM Memristors: Physical Nature of Their Low Voltage Operation With High Stability and Uniformity,” Nanoscale 12 (2020): 4320–4327.
F. Yuan, Z. Zhang, C. Liu, et al., “Real‐Time Observation of the Electrode‐Size‐Dependent Evolution Dynamics of the Conducting Filaments in a SiO2 Layer,” ACS Nano 11 (2017): 4097–4104.
Y. C. Yang, C. Chen, F. Zeng, and F. Pan, “Multilevel Resistance Switching in Cu/TaOx/Pt Structures Induced by a Coupled Mechanism,” Journal of Applied Physics 107 (2010): 093701.
X. Zhao, J. Ma, X. Xiao, et al., “Breaking the Current‐Retention Dilemma in Cation‐Based Resistive Switching Devices Utilizing Graphene With Controlled Defects,” Advanced Materials 30 (2018): 1705193.
C.‐F. Chang, J.‐Y. Chen, G.‐M. Huang, et al., “Revealing Conducting Filament Evolution in Low Power and High Reliability Fe3O4/Ta2O5 Bilayer RRAM,” Nano Energy 53 (2018): 871–879.
X. Zhao, S. Liu, J. Niu, et al., “Confining Cation Injection to Enhance CBRAM Performance by Nanopore Graphene Layer,” Small 13 (2017): 1603948.
R. Waser, “Electrochemical and Thermochemical Memories,” IEEE International Electron Devices Meeting (2008): 1–4.
Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, and W. Lu, “Observation of Conducting Filament Growth in Nanoscale Resistive Memories,” Nature Communications 3 (2012): 732.
T. Tsuruoka, K. Terabe, T. Hasegawa, and M. Aono, “Forming and Switching Mechanisms of a Cation‐Migration‐Based Oxide Resistive Memory,” Nanotechnology 21 (2010): 425205.
R. Soni, P. Meuffels, G. Staikov, et al., “On the Stochastic Nature of Resistive Switching in Cu Doped Ge0.3Se0.7 Based Memory Devices,” Journal of Applied Physics 110 (2011): 054509.
S. Menzel, U. Böttger, M. Wimmer, and M. Salinga, “Physics of the Switching Kinetics in Resistive Memories,” Advanced Functional Materials 25 (2015): 6306–6325.
S. Menzel, S. Tappertzhofen, R. Waser, and I. Valov, “Switching Kinetics of Electrochemical Metallization Memory Cells,” Physical Chemistry Chemical Physics 15 (2013): 6945–6952.
E. Budevski, G. Staikov, and W. Lorenz, Electrochemical Phase Formation and Growth (Wiley, 1996).
A. Belmonte, U. Celano, Z. Chen, et al., “Voltage‐controlled Reverse Filament Growth Boosts Resistive Switching Memory,” Nano Research 11 (2018): 4017–4025.
Y. Yang, P. Gao, L. Li, et al., “Electrochemical Dynamics of Nanoscale Metallic Inclusions in Dielectrics,” Nature Communications 5 (2014): 4232.
J. Y. Chen, C. W. Huang, C. H. Chiu, Y. T. Huang, and W. W. Wu, “Switching Kinetic of VCM‐Based Memristor: Evolution and Positioning of Nanofilament,” Advanced Materials 27 (2015): 5028–5033.
C. Wang, G. Q. Mao, M. Huang, et al., “HfO x /AlO y Superlattice‐Like Memristive Synapse,” Advanced Science 9 (2022): 2201446.
C. Li, B. Gao, Y. Yao, et al., “Direct Observations of Nanofilament Evolution in Switching Processes in HfO2‐Based Resistive Random Access Memory by In Situ TEM Studies,” Advanced Materials 29 (2017): 1602976.
Y. Hayakawa, A. Himeno, R. Yasuhara, et al., “Highly Reliable TaOx ReRAM With Centralized Filament for 28‐nm Embedded Application,” Symposium on VLSI Circuits Symposium on VLSI Circuits (VLSI Circuits), Kyoto, Japan, 2015, T14–T15, https://doi.org/10.1109/VLSIC.2015.7231381.
D. Sun, X. Zhu, S. Chen, et al., “Uniformity, Linearity, and Symmetry Enhancement in TiOx/MoS2–xOx Based Analog RRAM via S‐Vacancy Confined Nanofilament,” Nano Letters 24 (2024): 16283–16292.
T. Inoue, K. Croce, T. Morooka, M. Sakuma, K. Node, and D. I. Simon, “Vascular Inflammation and Repair: Implications for Re‐endothelialization, Restenosis, and Stent Thrombosis,” JACC: Cardiovascular Interventions 4 (2011): 1057–1066.
M. Cao, Y. Chen, J. Sun, et al., “Nonlinear Dependence of Set Time on Pulse Voltage Caused by Thermal Accelerated Breakdown in the Ti/HfO2/Pt Resistive Switching Devices,” Applied Physics Letters 101 (2012): 203502.
K. Fleck, U. Böttger, R. Waser, and S. Menzel, “Interrelation of Sweep and Pulse Analysis of the SET Process in SrTiO3 Resistive Switching Memories,” IEEE Electron Device Letters 35 (2014): 924.
S. Menzel, M. Waters, A. Marchewka, U. Böttger, R. Dittmann, and R. Waser, “Origin of the Ultra‐nonlinear Switching Kinetics in Oxide‐Based Resistive Switches,” Advanced Functional Materials 21 (2011): 4487–4492.
T. Ninomiya, S. Muraoka, Z. Wei, R. Yasuhara, K. Katayama, and T. Takagi, “Improvement of Data Retention During Long‐Term Use by Suppressing Conductive Filament Expansion in TaOx Bipolar‐ReRAM,” IEEE Electron Device Letters 34 (2013): 762–764.
C. Hermes, M. Wimmer, S. Menzel, et al., “Analysis of Transient Currents During Ultrafast Switching of TiO2 Nanocrossbar Devices,” IEEE Electron Device Letters 32 (2011): 1116–1118.
C. Baeumer, R. Valenta, C. Schmitz, et al., “Subfilamentary Networks Cause Cycle‐to‐Cycle Variability in Memristive Devices,” ACS Nano 11 (2017): 6921–6929.
H. Du, C.‐L. Jia, A. Koehl, et al., “Nanosized Conducting Filaments Formed by Atomic‐Scale Defects in Redox‐Based Resistive Switching Memories,” Chemistry of Materials 29 (2017): 3164–3173.
K. Kamiya, M. Y. Yang, B. Magyari‐Kope, M. Niwa, Y. Nishi, and K. Shiraishi, “Physics in Designing Desirable ReRAM Stack Structure‐atomistic Recipes Based on Oxygen Chemical Potential Control and Charge Injection/Removal,” IEEE International Electron Devices Meeting (2012).
D. J. J. Loy, P. A. Dananjaya, S. Chakrabarti, et al., “Oxygen Vacancy Density Dependence With a Hopping Conduction Mechanism in Multilevel Switching Behavior of HfO2‐Based Resistive Random Access Memory Devices,” ACS Applied Electronic Materials 2 (2020): 3160–3170.
W. Banerjee, S. H. Kim, S. Lee, S. Lee, D. Lee, and H. Hwang, “Deep Insight into Steep‐Slope Threshold Switching with Record Selectivity (>4 × 1010) Controlled by Metal‐Ion Movement through Vacancy‐Induced‐Percolation Path: Quantum‐Level Control of Hybrid‐Filament,” Advanced Functional Materials 31 (2021): 2104054.
S. Wang, X. Ning, A. Hao, and R. Chen, “Metal Nanoparticles Layer Boosted Resistive Switching Property in NiFe2O4‐based Memory Devices,” Journal of Alloys and Compounds 908 (2022): 164569.
D. Ielmini, R. Bruchhaus, and R. Waser, “Thermochemical Resistive Switching: Materials, Mechanisms, and Scaling Projections,” Phase Transitions 84 (2011): 570–602.
J. F. Gibbons and W. E. Beadle, “Switching Properties of Thin NiO Films,” Solid‐State Electronics 7 (1964): 785–790.
W. Wang, B. Zhang, and H. Zhao, “Forming‐Free Bipolar and Unipolar Resistive Switching Behaviors with Low Operating Voltage in Ag/Ti/CeO2/Pt Devices,” Results in Physics 16 (2020): 103001.
M.‐J. Lee, S. Han, S. H. Jeon, et al., “Electrical Manipulation of Nanofilaments in Transition‐Metal Oxides for Resistance‐Based Memory,” Nano Letters 9 (2009): 1476–1481.
H.‐H. Choi, S. H. Paik, Y. Kim, et al., “Facilitation of the Thermochemical Mechanism in NiO‐Based Resistive Switching Memories via Tip‐Enhanced Electric Fields,” Journal of Industrial and Engineering Chemistry 94 (2021): 233–239.
D. Ielmini, C. Cagli, and F. Nardi, “Resistance Transition in Metal Oxides Induced by Electronic Threshold Switching,” Applied Physics Letters 94 (2009): 063511.
D. E. Kim, A. S. Chabungbam, G. Kim, et al., “Doping Engineering for Optimized Self‐Rectifying TaO x Memristor for Crossbar Array Neuromorphic applications,” Advanced Functional Materials 35 (2025): 2503883.
M. Hellenbrand, B. Bakhit, H. Dou, et al., “Thin Film Design of Amorphous Hafnium Oxide Nanocomposites Enabling Strong Interfacial Resistive Switching Uniformity,” Science Advances 9 (2023): adg1946.
H. Tan, S. Majumdar, Q. Qin, J. Lahtinen, and S. van Dijken, “Mimicking Neurotransmitter Release and Long‐Term Plasticity by Oxygen Vacancy Migration in a Tunnel Junction Memristor,” Advanced Intelligent Systems 1 (2019): 1900036.
X. Liu, K. P. Biju, E. M. Bourim, et al., “Low Programming Voltage Resistive Switching in Reactive Metal/Polycrystalline Pr0.7Ca0.3MnO3 Devices,” Solid State Communications 150 (2010): 2231–2235.
S. Bagdzevicius, K. Maas, M. Boudard, and M. Burriel, “Interface‐Type Resistive Switching in Perovskite Materials,” Journal of Electroceramics 39 (2017): 157–184.
F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, “Recent Progress in Resistive Random Access Memories: Materials, Switching Mechanisms, and Performance,” Materials Science and Engineering: R: Reports 83 (2014): 1–59.
S. Siegel, C. Baeumer, A. Gutsche, et al., “Trade‐Off Between Data Retention and Switching Speed in Resistive Switching ReRAM Devices,” Advanced Electronic Materials 7 (2020): 2000815.
G. Li, Z. Yang, X. Zhang, G. Li, X. Sun, and W. Zhang, “Origin of Resistance Switching and Regulation of the Resistance Stability by the Interface State Density on the Pt/Nb:SrTiO3 Interface,” Physica Status Solidi (a) 216 (2019): 1900125.
J. Bae, C. Kwon, S.‐O. Park, et al., “Tunable Ion Energy Barrier Modulation Through Aliovalent Halide Doping for Reliable and Dynamic Memristive Neuromorphic Systems,” Science Advances 10 (2024): adm7221.
M. Kim, S. Lee, S. J. Kim, B. M. Lim, B.‐S. Kang, and H.‐S. Lee, “Study on the Sodium‐Doped Titania Interface‐Type Memristor,” ACS Applied Materials & Interfaces 16 (2024): 16453.
K. Baek, S. Park, J. Park, Y.‐M. Kim, H. Hwang, and S. H. Oh, “In Situ TEM Observation on the Interface‐Type Resistive Switching by Electrochemical Redox Reactions at a TiN/PCMO Interface,” Nanoscale 9 (2017): 582–593.
X. Xu, X. Yin, L. Chen, et al., “Bipolar Interface‐Type Resistive Switching Effect in the MoS2–xOx Film,” Applied Physics A 128 (2022): 623.
H. So, J. Lee, C. Mahata, S. Kim, and S. Kim, “Synaptic Properties and Short‐Term Memory Dynamics of TiO 2 /WO x Heterojunction Memristor for Reservoir Computing,” Advanced Materials Technologies 9 (2024): 2301390.
K. Chen, Z. Fan, J. Rao, et al., “Versatile SrFeO for Memristive Neurons and Synapses,” Journal of Materiomics 8 (2022): 967–975.
J. Rao, Z. Fan, L. Hong, et al., “An electroforming‐Free, Analog interface‐Type Memristor Based on a SrFeOx Epitaxial Heterojunction for Neuromorphic Computing,” Materials Today Physics 18 (2021): 100392.
S. Song, W. Ham, G. Park, et al., “Highly Stable Artificial Synapses Based on Ferroelectric Tunnel Junctions for Neuromorphic Computing Applications,” Advanced Materials Technologies 7 (2022): 2101323.
Y. Bai, Z. J. Wang, Y. N. Chen, and J. Z. Cui, “Resistive Switching and Modulation of Pb(Zr0.4Ti0.6)O3/Nb:SrTiO3 Heterostructures,” ACS Applied Materials & Interfaces 8 (2016): 32948–32955.
S. Majumdar, H. Tan, Q. H. Qin, and S. van Dijken, “Energy‐Efficient Organic Ferroelectric Tunnel Junction Memristors for Neuromorphic Computing,” Advanced Electronic Materials 5 (2019): 1800795.
D. J. Kim, H. Lu, S. Ryu, et al., “Ferroelectric Tunnel Memristor,” Nano Letters 12 (2012): 5697–5702.
Y. Yang, M. Wu, X. Li, et al., “The Role of Ferroelectric Polarization in Resistive Memory Properties of Metal/Insulator/Semiconductor Tunnel Junctions: A Comparative Study,” ACS Applied Materials & Interfaces 12 (2020): 32935–32942.
Z.‐D. Luo, J. J. P. Peters, A. M. Sanchez, and M. Alexe, “Flexible Memristors Based on Single‐Crystalline Ferroelectric Tunnel Junctions,” ACS Applied Materials & Interfaces 11 (2019): 23313–23319.
X.‐C. Lai, Z. Tang, J. Fang, et al., “An Adjustable Multistage Resistance Switching Behavior of a Photoelectric Artificial Synaptic Device With a Ferroelectric Diode Effect for Neuromorphic Computing,” Materials Horizons 11 (2024): 2886–2897.
N. Gong, X. Sun, H. Jiang, K. Chang‐Liao, Q. Xia, and T. Ma, “Nucleation Limited Switching (NLS) Model for HfO2‐Based Metal‐Ferroelectric‐Metal (MFM) Capacitors: Switching Kinetics and Retention Characteristics,” Applied Physics Letters 112 (2018): 262903.
R. Guido, H. Lu, P. D. Lomenzo, T. Mikolajick, A. Gruverman, and U. Schroeder, “Kinetics of N‐ to M‐Polar Switching in Ferroelectric Al1−xScxN Capacitors,” Advanced Science 11 (2024): 2308797.
A. K. Tagantsev, I. Stolichnov, N. Setter, J. S. Cross, and M. Tsukada, “Non‐Kolmogorov‐Avrami Switching Kinetics in Ferroelectric Thin Films,” Physical Review B 66 (2002): 214109.
A. Q. Jiang, H. J. Lee, C. S. Hwang, and J. F. Scott, “Sub‐Picosecond Processes of Ferroelectric Domain Switching from Field and Temperature Experiments,” Advanced Functional Materials 22 (2012): 192–199.
C. Ma, Z. Luo, W. Huang, et al., “Sub‐Nanosecond Memristor Based on Ferroelectric Tunnel Junction,” Nature Communications 11 (2020): 1439.
B. Huang, X. Zhao, X. Li, et al., “Schottky Barrier Control of Self‐Polarization for a Colossal Ferroelectric Resistive Switching,” ACS Nano 17 (2023): 12347–12357.
S. Catalano, M. Gibert, J. Fowlie, J. Iniguez, J. M. Triscone, and J. Kreisel, “Rare‐Earth Nickelates RNiO3: Thin Films and Heterostructures,” Reports on Progress in Physics 81 (2018): 046501.
S. B. Roy, Mott Insulators: Physics and Applications. (IOP Publishing, 2019).
Z. Yang, C. Ko, and S. Ramanathan, “Oxide Electronics Utilizing Ultrafast Metal‐Insulator Transitions,” Annual Review of Materials Research 41 (2011): 337–367.
K. Liu, S. Lee, S. Yang, O. Delaire, and J. Wu, “Recent Progresses on Physics and Applications of Vanadium Dioxide,” Materials Today 21 (2018): 875–896.
V. Eyert, “The Metal‐Insulator Transition of NbO2: An Embedded Peierls Instability,” Europhysics Letters (EPL) 58 (2002): 851–856.
S. Biermann, A. Poteryaev, A. I. Lichtenstein, and A. Georges, “Dynamical Singlets and Correlation‐Assisted Peierls Transition in VO2,” Physical Review Letters 94 (2005): 026404.
Z. Zhang, D. Schwanz, B. Narayanan, et al., “Perovskite Nickelates as Electric‐Field Sensors in Salt Water,” Nature 553 (2018): 68–72.
J. Shi, Y. Zhou, and S. Ramanathan, “Colossal Resistance Switching and Band Gap Modulation in a Perovskite Nickelate by Electron Doping,” Nature Communications 5 (2014): 4860.
H. Jerominek, F. Picard, and D. Vincent, “Vanadium Oxide Films for Optical Switching and Detection,” Optical Engineering 32 (1993): 2092.
S. H. Bae, S. Lee, H. Koo, et al., “The Memristive Properties of a Single VO2 Nanowire With Switching Controlled by Self‐Heating,” Advanced Materials 25 (2013): 5098–5103.
I. Valmianski, P. Y. Wang, S. Wang, J. G. Ramirez, S. Guénon, and I. K. Schuller, “Origin of the Current‐Driven Breakdown in Vanadium Oxides: Thermal Versus Electronic,” Physical Review B 98 (2018): 195144.
P.‐F. Wang, Q. Hu, T. Zheng, Y. Liu, X. Xu, and J.‐L. Sun, “Optically Monitored Electric‐Field‐Induced Phase Transition in Vanadium Dioxide Crystal Film,” Crystals 10 (2020): 764.
J. Del Valle, N. M. Vargas, R. Rocco, et al., “Spatiotemporal Characterization of the Field‐Induced Insulator‐to‐Metal Transition,” Science 373 (2021): 907.
J. del Valle, P. Salev, F. Tesler, et al., “Subthreshold Firing in Mott Nanodevices,” Nature 569 (2019): 388.
S. W. Olin, S. A. Razek, L. F. J. Piper, and W. C. Lee, “Mechanism of the Resistivity Switching Induced by the Joule Heating in Crystalline NbO2,” Advanced Quantum Technologies 5 (2022): 2200067.
Y. Liu, A. Liu, X. Chai, et al., “An Interesting Functional Phase Change Material VO2: Response to Multivariate Control and Extensive Applications in Optics and Electronics,” Advanced Electronic Materials 10 (2023): 2300699.
B. Mayer, C. Schmidt, A. Grupp, et al., “Tunneling Breakdown of a Strongly Correlated Insulating state in VO2 Induced by Intense Multiterahertz Excitation,” Physical Review B 91 (2015): 235113.
T. Oka, R. Arita, and H. Aoki, “Breakdown of a Mott Insulator: A Nonadiabatic Tunneling Mechanism,” Physical Review Letters 91 (2003): 066406.
T. Oka and H. Aoki, “Ground‐State Decay Rate for the Zener Breakdown in Band and Mott Insulators,” Physical Review Letters 95 (2005): 137601.
B. Wu, A. Zimmers, H. Aubin, R. Ghosh, Y. Liu, and R. Lopez, “Electric‐Field‐Driven Phase Transition in Vanadium Dioxide,” Physical Review B 84 (2011): 241410.
F. Giorgianni, J. Sakai, and S. Lupi, “Overcoming the Thermal Regime for the Electric‐Field Driven Mott Transition in Vanadium Sesquioxide,” Nature Communications 10 (2019): 1159.
J. Son, S. Rajan, S. Stemmer, and S. J. Allen, “A Heterojunction Modulation‐Doped Mott Transistor,” Journal of Applied Physics 110 (2011): 084503.
Y. Hao, X. Chen, L. Zhang, et al., “Record High Room Temperature Resistance Switching in Ferroelectric‐Gated Mott Transistors Unlocked by Interfacial Charge Engineering,” Nature Communications 14 (2023): 8247.
J. S. Brockman, L. Gao, B. Hughes, et al., “Subnanosecond Incubation Times for Electric‐Field‐Induced Metallization of a Correlated Electron Oxide,” Nature Nanotechnology 9 (2014): 453–458.
A. Sood, X. Shen, Y. Shi, et al., “Universal Phase Dynamics in VO2 Switches Revealed by Ultrafast Operando Diffraction,” Science 373 (2021): 352–355.
V. R. Morrison, R. P. Chatelain, K. L. Tiwari, et al., “A Photoinduced Metal‐Like Phase of Monoclinic VO2 Revealed by Ultrafast Electron Diffraction,” Science 346 (2014): 445–448.
D. Wegkamp, M. Herzog, L. Xian, et al., “Instantaneous Band Gap Collapse in Photoexcited Monoclinic VO2 due to Photocarrier Doping,” Physical Review Letters 113 (2014): 216401.
W. Yi, K. K. Tsang, S. K. Lam, X. Bai, J. A. Crowell, and E. A. Flores, “Biological Plausibility and Stochasticity in Scalable VO2 Active Memristor Neurons,” Nature Communications 9 (2018): 4661.
N. Shukla, A. Parihar, E. Freeman, et al., “Synchronized Charge Oscillations in Correlated Electron Systems,” Scientific Reports 4 (2014): 4964.
M. Samizadeh Nikoo, R. Soleimanzadeh, A. Krammer, et al., “Electrical Control of Glass‐Like Dynamics in Vanadium Dioxide for Data Storage and Processing,” Nature Electronics 5 (2022): 596–603.
J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant, and S. S. Parkin, “Suppression of Metal‐Insulator Transition in VO2 by Electric Field–Induced Oxygen Vacancy Formation,” Science 339 (2013): 1402–1405.
J. Shi, S. D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, “A Correlated Nickelate Synaptic Transistor,” Nature Communications 4 (2013): 2676.
I. Matsuzawa, T. Ozawa, Y. Nishiya, et al., “Controlling Dual Mott States by Hydrogen Doping to Perovskite Rare‐Earth Nickelates,” Physical Review Materials 7 (2023): 085003.
C. Oh, S. Heo, H. M. Jang, and J. Son, “Correlated Memory Resistor in Epitaxial NdNiO3 Heterostructures With Asymmetrical Proton Concentration,” Applied Physics Letters 108 (2016): 122106.
K. Ramadoss, F. Zuo, Y. Sun, et al., “Proton‐Doped Strongly Correlated Perovskite Nickelate Memory Devices,” Ieee Electron Device Letters 39 (2018): 1500.
H. Ren, A. I. Osaka, A. N. Hattori, et al., “Controllable Strongly Electron‐Correlated Properties of NdNiO3 Induced by Large‐Area Protonation With Metal–Acid Treatment,” ACS Applied Electronic Materials 4 (2022): 3495–3502.
H.‐T. Zhang, Z. Zhang, H. Zhou, H. Tanaka, D. D. Fong, and S. Ramanathan, “Beyond Electrostatic Modification: Design and Discovery of Functional Oxide Phases via Ionic‐Electronic Doping,” Advanced Physics: X 4 (2018): 1523686.
I. A. Zaluzhnyy, P. O. Sprau, R. Tran, et al., “Proton Distribution Visualization in Perovskite Nickelate Devices Utilizing Nanofocused X Rays,” Physical Review Materials 5 (2021): 095003.
K. Yamauchi and I. Hamada, “Hydrogen‐Induced Insulating State Accompanied by Interlayer Charge Ordering in SmNiO3,” Physical Review B 108 (2023): 045108.
L. Gao, H. Wang, F. Meng, et al., “Unveiling Strong Ion–Electron–Lattice Coupling and Electronic Antidoping in Hydrogenated Perovskite Nickelate,” Advanced Materials 35 (2023): 2300617.
R. S. Bisht, J. Park, H. Yu, et al., “Spatial Interactions in Hydrogenated Perovskite Nickelate Synaptic Networks,” Nano Letters 23 (2023): 7166–7173.
H. Yoon, M. Choi, T. W. Lim, et al., “Reversible Phase Modulation and Hydrogen Storage in Multivalent VO2 Epitaxial Thin Films,” Nature Materials 15 (2016): 1113–1119.
X. Yao, K. Klyukin, W. Lu, et al., “Protonic Solid‐State Electrochemical Synapse for Physical Neural Networks,” Nature Communications 11 (2020): 3134.
J. T. Yang, C. Ge, J. Y. Du, et al., “Artificial Synapses Emulated by an Electrolyte‐Gated Tungsten‐Oxide Transistor,” Advanced Materials 30 (2018): 1801548.
D. Vivona, K. Gordiz, R. Meyer, S. Raman, and Y. Shao‐Horn, “Mechanistic Insights Into the Origin of the Oxygen Migration Barrier,” Journal of Materials Chemistry A 12 (2024): 22737–22755.
M. Onen, N. Emond, B. Wang, et al., “Nanosecond Protonic Programmable Resistors for Analog Deep Learning,” Science 377 (2022): 539–543.
J. D. Budai, J. Hong, M. E. Manley, et al., “Metallization of Vanadium Dioxide Driven By Large Phonon Entropy,” Nature 515 (2014): 535–539.
M. M. Qazilbash, M. Brehm, B. G. Chae, et al., “Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano‐Imaging,” Science 318 (2007): 1750–1753.
Y. Tokura, “Correlated‐Electron Physics in Transition‐Metal Oxides,” Physics Today 56 (2003): 50–55.
L. Chua, “Resistance Switching Memories Are Memristors,” Applied Physics A 102 (2011): 765–783.
J. S. Lee, S. Lee, and T. W. Noh, “Resistive Switching Phenomena: A Review of Statistical Physics Approaches,” Applied Physics Reviews 2 (2015): 031303.
S. P. Adhikari, M. P. Sah, H. Kim, and L. O. Chua, “Three Fingerprints of Memristor,” IEEE Transactions on Circuits and Systems I: Regular Papers 60 (2013): 3008.
D. Ielmini and G. Pedretti, “Resistive Switching Random‐Access Memory (RRAM): Applications and Requirements for Memory and Computing,” Chemical Reviews 125 (2025): 5584–5625.
R. K. Katiyar, Y. Sharma, D. G. Barrionuevo Diestra, et al., “Unipolar Resistive Switching in Planar Pt/BiFeO3/Pt Structure,” AIP Advances 5 (2015): 037109.
W.‐Y. Chang, Y.‐C. Lai, T.‐B. Wu, S.‐F. Wang, F. Chen, and M.‐J. Tsai, “Unipolar Resistive Switching Characteristics of ZnO Thin Films for Nonvolatile Memory Applications,” Applied Physics Letters 92 (2008): 022110.
D. Choi and C. S. Kim, “Coexistence of Unipolar and Bipolar Resistive Switching in Pt/NiO/Pt,” Applied Physics Letters 104 (2014): 193507.
S. Gao, G. Liu, Q. Chen, et al., “Improving Unipolar Resistive Switching Uniformity With Cone‐Shaped Conducting Filaments and Its Logic‐In‐Memory Application,” ACS Applied Materials & Interfaces 10 (2018): 6453–6462.
M. Ezzadeen, A. Majumdar, O. Valorge, et al., “Implementation of Binarized Neural Networks Immune to Device Variation and Voltage Drop Employing Resistive Random Access Memory Bridges and Capacitive Neurons,” Communications Engineering 3 (2024): 80.
Y.‐S. Chen, P.‐S. Chen, H.‐Y. Lee, et al., “Enhanced Endurance Reliability and Low Current Operation for AlOx/HfOx Based Unipolar RRAM With Ni Electrode,” Solid‐State Electronics 94 (2014): 1–5.
W. Zuo, Q. Zhu, Y. Fu, et al., “Volatile Threshold Switching Memristor: An Emerging Enabler in the AIoT Era,” Journal of Semiconductors 44 (2023): 053102.
M. D. Pickett, G. Medeiros‐Ribeiro, and R. S. Williams, “A Scalable Neuristor Built With Mott Memristors,” Nature Materials 12 (2013): 114–117.
D. M. Wilson, “Electronic Interface Circuits for Resistance‐Based Sensors,” IEEE Sensors Journal 22 (2022): 10223–10234.
W. Yang, H. Kan, G. Shen, and Y. Li, “A Network Intrusion Detection System With Broadband WO3–x/WO3–x‐Ag/WO3–x Optoelectronic Memristor,” Advanced Functional Materials 34 (2024): 2312885.
J. Pan, H. Kan, Z. Liu, et al., “Flexible TiO2‐WO3−x Hybrid Memristor with Enhanced Linearity and Synaptic Plasticity for Precise Weight Tuning in Neuromorphic Computing,” npj Flexible Electronics 8 (2024): 70.
A. A. Bessonov, M. N. Kirikova, D. I. Petukhov, M. Allen, T. Ryhänen, and M. J. A. Bailey, “Layered Memristive and Memcapacitive Switches for Printable Electronics,” Nature Materials 14 (2014): 199–204.
G. Zhou, Z. Wang, B. Sun, et al., “Volatile and Nonvolatile Memristive Devices for Neuromorphic Computing,” Advanced Electronic Materials 8 (2022): 2101217.
S. Kumar, X. Wang, J. P. Strachan, Y. Yang, and W. D. Lu, “Dynamical Memristors for Higher‐Complexity Neuromorphic Computing,” Nature Reviews Materials 7 (2022): 575–591.
W. Huh, D. Lee, and C. H. Lee, “Memristors Based on 2D Materials as an Artificial Synapse for Neuromorphic Electronics,” Advanced Materials 32 (2020): 2002092.
Q. Liu, S. Gao, Y. Li, et al., “HfO2/WO3 Heterojunction Structured Memristor for High‐Density Storage and Neuromorphic Computing,” Advanced Materials Technologies 8 (2022): 2201143.
T. Chang, S.‐H. Jo, and W. Lu, “Short‐Term Memory to Long‐Term Memory Transition in a Nanoscale Memristor,” ACS Nano 5 (2011): 7669–7676.
S. Kunwar, C. B. Somodi, R. A. Lalk, et al., “Protons: Critical Species for Resistive Switching in Interface‐Type Memristors,” Advanced Electronic Materials 9 (2022): 2200816.
H. Zhou, S. Li, K.‐W. Ang, and Y.‐W. Zhang, “Recent Advances in In‐Memory Computing: Exploring Memristor and Memtransistor Arrays with 2D Materials,” Nano‐Micro Letters 16 (2024): 121.
J. Tang, F. Yuan, X. Shen, et al., “Bridging Biological and Artificial Neural Networks With Emerging Neuromorphic Devices: Fundamentals, Progress, and Challenges,” Advanced Materials 31 (2019): 1902761.
T. Parida, M. A. Luong, S. Das, A. Claverie, and A. Kanjilal, “Multilevel Resistive Switching Dynamics by Controlling Phase and Self‐Assembled Nanochannels in HfO2,” Small 21 (2024): 2409798.
W. Kim, S. Menzel, D. J. Wouters, R. Waser, and V. Rana, “3‐Bit Multilevel Switching by Deep Reset Phenomenon in Pt/W/TaOX/Pt‐ReRAM Devices,” IEEE Electron Device Letters 37 (2016): 564–567.
N. Thathron, B. R. Biradar, S. K. Pandey, S. S. Mal, and P. P. Das, “Multistate Nonpolar Resistive Switching in Nickel Embedded Polyoxovanadate for High Density Data Storage,” Journal of Alloys and Compounds 1003 (2024): 175496.
B. Sun, S. Ranjan, G. Zhou, et al., “Multistate Resistive Switching Behaviors for Neuromorphic Computing in Memristor,” Materials Today Advances 9 (2021): 100125.
F. Nie, H. Fang, J. Wang, et al., “An Adaptive Solid‐State Synapse With Bi‐Directional Relaxation for Multimodal Recognition and Spatio‐Temporal Learning,” Advanced Materials 37 (2025): 2412006.
M. Lanza, S. Pazos, and F. Aguirre, “The Achilles′ Heel of Memristive Technologies,” Nature Reviews Electrical Engineering 2 (2025): 654–656.
S. Pechmann and A. Hagelauer, “A Read Circuit Design for Multi‐Level RRAM Cells Exhibiting Small Resistance Windows,” 2022 IEEE 65th International Midwest Symposium on Circuits and Systems (2022): 1–2.
S. Yu, Y. Wu, and H. S. P. Wong, “Investigating the Switching Dynamics and Multilevel Capability of Bipolar Metal Oxide Resistive Switching Memory,” Applied Physics Letters 98 (2011): 103514.
S. Hosseinzadeh, M. Biglari, and D. Fey, “TReMo+: Modeling Ternary and Binary ReRAM‐Based Memories with Flexible Write‐Verification Mechanisms,” Frontiers in Nanotechnology 3 (2021): 765947.
B.‐K. An, X. Zhang, A. T. Do, and T. Tae‐Hyoug Kim, “Time‐based Sensing With Linear Current‐to‐Time Conversion for Multi‐level Resistive Memory,” in 2024 IEEE International Symposium on Circuits and Systems (IEEE, 2024), 1–5.
D. Veksler, G. Bersuker, B. Chakrabarti, et al., “Methodology for the Statistical Evaluation of the Effect of Random Telegraph Noise (RTN) on RRAM Characteristics,” 2012 International Electron Devices Meeting 11 (2012): 1351.
M. A. Lastras‐Montano, O. Del Pozo‐Zamudio, L. Glebsky, M. Zhao, H. Wu, and K. T. Cheng, “Ratio‐based Multi‐level Resistive Memory Cells,” Scientific Reports 11 (2021): 1351.
S. Pazos, X. Xu, T. Guo, K. Zhu, H. N. Alshareef, and M. Lanza, “Solution‐Processed Memristors: Performance and Reliability,” Nature Reviews Materials 9 (2024): 358–373.
L. Zhang, R. Huang, Y. Y. Hsu, et al., “Statistical Analysis of Retention Behavior and Lifetime Prediction of HfOx‐Based RRAM,” in 2011 International Reliability Physics Symposium (IEEE, 2011), MY.8.1–MY.8.5.
B. Gao, J. F. Kang, H. W. Zhang, et al., “Oxide‐based RRAM: Physical Based Retention Projection,” in 2010 Proceedings of the European Solid State Device Research Conference (IEEE, 2010), 392–395.
B. Gao, H. Zhang, B. Chen, et al., “Modeling of Retention Failure Behavior in Bipolar Oxide‐Based Resistive Switching Memory,” IEEE Electron Device Letters 32 (2011): 276–278.
Z. Wang, Z. Jiang, X. Zheng, et al., “Ultrafast Accelerated Retention Test Methodology for RRAM Using Micro Thermal Stage,” IEEE Electron Device Letters 38 (2017): 863–866.
Y. Shi, C. Pan, V. Chen, et al., “Coexistence of Volatile and Non‐Volatile Resistive Switching in 2D h‐BN Based Electronic Synapses,” in 2017 IEEE International Electron Devices Meeting (IEEE, 2017), 5.4.1–5.4.4.
J. F. Kang, P. Huang, Z. Chen, et al., “Physical Understanding and Optimization of Resistive Switching Characteristics in oxide‐RRAM,” in 2016 46th European Solid‐State Device Research Conference (ESSDERC) (IEEE, 2016): 154–159.
A. V. Fadeev and K. V. Rudenko, “To the Issue of the Memristor's HRS and LRS States Degradation and Data Retention Time,” Russian Microelectronics 50 (2021): 311–325.
M. Lanza, H. S. P. Wong, E. Pop, et al. Advanced Electronics Materials 5 (2018): 1800141.
C. W. Hsu, Y. F. Wang, C. C. Wan, et al., “Homogeneous Barrier Modulation of TaOx/TiO2 Bilayers for Ultra‐High Endurance Three‐Dimensional Storage‐Class Memory,” Nanotechnology 25 (2014): 165202.
C. Bengel, J. Mohr, S. Wiefels, et al., “Reliability Aspects of Binary Vector‐Matrix‐Multiplications Using ReRAM Devices,” Neuromorphic Computing and Engineering 2 (2022): 034001.
H. Xun, M. Fieback, S. Yuan, et al., “In‐Field Monitoring and Preventing Read Disturb Faults in RRAMs,” in 2025 IEEE European Test Symposium (IEEE, 2025), 1–6.
X. Yan, J. Zhao, S. Liu, et al., “Memristor With Ag‐Cluster‐Doped TiO2 Films as Artificial Synapse for Neuroinspired Computing,” Advanced Functional Materials 28 (2017): 1705320.
L. Goux, A. Fantini, A. Redolfi, et al., “Role of the Ta Scavenger Electrode in the Excellent Switching Control and Reliability of a Scalable Low‐current Operated TiN‐Ta2O5‐Ta RRAM Device,” in 2014 Symposium on VLSI Technology: Digest of Technical Papers (IEEE, 2014), 1–2.
M. D. Pickett and R. S. Williams, “Sub‐100 fJ and Sub‐Nanosecond Thermally Driven Threshold Switching in Niobium Oxide Crosspoint Nanodevices,” Nanotechnology 23 (2012): 215202.
A. Fantini, L. Goux, R. Degraeve, et al., “Intrinsic Switching Variability in HfO2 RRAM,” in 2013 5th IEEE International Memory Workshop (IEEE, 2013), 30–33.
T. Y. Wang, J. L. Meng, M. Y. Rao, et al., “Three‐Dimensional Nanoscale Flexible Memristor Networks with Ultralow Power for Information Transmission and Processing Application,” Nano Letters 20 (2020): 4111–4120.
L. Yan, Y. Zhang, Z. Hu, Z. Liu, J. Wang, and L. Yu, “High‐Performance Edge‐Line Contact Memristors With In‐Plane Solid–Liquid–Solid Grown Silicon Nanowires for Probabilistic Neuromorphic Computing,” ACS Nano 19 (2025): 11001–11011.
G. Vinuesa, H. García, E. Pérez, et al., “On the Asymmetry of Resistive Switching Transitions,” Electronics 13 (2024): 2639.
K. Yang, J. Joshua Yang, R. Huang, and Y. Yang, “Nonlinearity in Memristors for Neuromorphic Dynamic Systems,” Small Science 2 (2021): 2100049.
P. Pouyan, E. Amat, and A. Rubio, “Memristive Crossbar Memory Lifetime Evaluation and Reconfiguration Strategies,” IEEE Transactions on Emerging Topics in Computing 6 (2018): 207.
G. W. Burr, R. M. Shelby, S. Sidler, et al., “Experimental Demonstration and Tolerancing of a Large‐Scale Neural Network (165 000 Synapses) Using Phase‐Change Memory as the Synaptic Weight Element,” IEEE Transactions on Electronic Devices 62 (2015): 3498–3507.
S. Khot, D. Jung, and Y. Kwon, “Finite‐element Simulation of Interfacial Resistive Switching by Schottky Barrier Height Modulation,” Journal of Computational Electronics 22 (2023): 1453–1462.
M. K. F. Lee, Y. Cui, T. Somu, et al., “A System‐Level Simulator for RRAM‐Based Neuromorphic Computing Chips,” ACM Transactions on Architecture and Code Optimization 15 (2019): 64.
C. Quan, M. E. Fouda, S. Lee, and J. Lee, “Multi‐Fidelity Nonideality Simulation and Evaluation Framework for Resistive Neuromorphic Computing,” in 2022 56th Asilomar Conference on Signals, Systems, and Computers (IEEE, 2022), 1152–1156.
C. Fernandez, J. Gomez, J. Ortiz, and I. Vourkas, “Comprehensive Predictive Modeling of Resistive Switching Devices Using a Bias‐dependent Window Function Approach,” Solid‐State Electronics 170 (2020): 107833.
F. M. Quintana, Maryada, P. L. Galindo, E. Donati, G. Indiveri, and F. Perez‐Peña, “A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures,” Neuromorphic Computing and Engineering 5 (2025): 034006.
F. Aguirre, A. Sebastian, M. L. Gallo, et al., “Hardware Implementation of Memristor‐based Artificial Neural Networks,” Nature Communications 15 (2024): 1974.
J. B. Roldán, E. Miranda, D. Maldonado, et al., “Variability in Resistive Memories,” Advanced Intelligent Systems 5 (2023): 2200338.
T. Shi, R. Wang, Z. Wu, Y. Sun, J. An, and Q. Liu, “A Review of Resistive Switching Devices: Performance Improvement, Characterization, and Applications,” Small Structures 2 (2021): 2000109.
Y. Xi, B. Gao, J. Tang, et al., “In‐memory Learning with Analog Resistive Switching Memory: A Review and Perspective,” Proceedings of the IEEE 109 (2021): 14–42.
M. Zhu, H. Ouyang, Z. Yu, et al., “Doping Engineering in Tantalum Oxide‐based RRAM With Enhanced Resistive Switching Behaviors and Synaptic Features for Neuromorphic Applications,” Materials & Design 260 (2025): 115199.
B. Jana, K. Ghosh, and A. R. Chaudhuri, “Mitigation of Memory state Variability in SiO2 Memristors by Cu Nanoparticles Incorporation,” Journal of Alloys and Compounds 1021 (2025): 179690.
H. J. Kim, M. Kim, K. Beom, H. Lee, C. J. Kang, and T.‐S. Yoon, “A Pt/ITO/CeO2/Pt Memristor With an Analog, Linear, Symmetric, and Long‐Term Stable Synaptic Weight Modulation,” APL Materials 7 (2019): 071113.
S. K. Mohanty, D. Panda, K. P. K. Reddy, P.‐T. Lee, C.‐H. Wu, and K.‐M. Chang, “Uniform Resistive Switching and Highly Stable Synaptic Characteristics of HfOx Sandwiched TaOx‐Based Memristor for Neuromorphic System,” Ceramics International 49 (2023): 16909–16917.
J. Wang, X. Pan, Q. Wang, et al., “Reliable Resistive Switching and Synaptic Plasticity in Ar+‐Irradiated Single‐Crystalline LiNbO3 Memristor,” Applied Surface Science 596 (2022): 153653.
W. Wu, H. Wu, B. Gao, N. Deng, S. Yu, and H. Qian, “Improving Analog Switching in HfOx‐Based Resistive Memory With a Thermal Enhanced Layer,” IEEE Electron Device Letters 38 (2017): 1019.
S.‐M. Kim, S. Kim, L. Ling, et al., “Linear and Symmetric Li‐Based Composite Memristors for Efficient Supervised Learning,” ACS Applied Materials & Interfaces 14 (2022): 5673–5681.
Y. Li, L. Loh, S. Li, et al., “Anomalous Resistive Switching in Memristors Based on Two‐Dimensional Palladium Diselenide Using Heterophase Grain Boundaries,” Nature Electronics 4 (2021): 348–356.
A. Baroni, E. Pérez, K. D. S. Reddy, et al., “Enhancing RRAM Reliability: Exploring the Effects of Al Doping on HfO2‐Based Devices,” IEEE Transactions on Device and Materials Reliability 25 (2025): 379–387.
S. Petzold, A. Zintler, R. Eilhardt, et al., “Forming‐Free Grain Boundary Engineered Hafnium Oxide Resistive Random Access Memory Devices,” Advanced Electronic Materials 5 (2019): 1900484.
H. K. Seo, J.‐S. Jeong, J. Jung, G. H. Kim, and M. K. Yang, “Enhancing Stability and Iterative Learning in Neuromorphic Memristor via TiN/SiOx/TiN Interface Engineering,” Nanoscale 17 (2025): 10946–10956.
C. Li, D. Belkin, Y. N. Li, et al., “Efficient and Self‐Adaptive In‐Situ Learning in Multilayer Memristor Neural Networks,” Nature Communications 9 (2018): 2385.
S. Ambrogio, S. Balatti, V. Milo, et al., “Neuromorphic Learning and Recognition with One‐Transistor‐One‐Resistor Synapses and Bistable Metal Oxide RRAM,” IEEE Transactions on Electron Devices 63 (2016): 1508–1515.
T. J. Yang, J. R. Cho, H. Lee, et al., “Improvement of the Symmetry and Linearity of Synaptic Weight Update by Combining the InGaZnO Synaptic Transistor and Memristor,” IEEE Access 12 (2024): 28531–28537.
K. M. Kim, J. J. Yang, J. P. Strachan, et al., “Voltage Divider Effect for the Improvement of Variability and Endurance of TaOx Memristor,” Scientific Reports 6 (2016): 20085.
E. Perez, D. Maldonado, E. P.‐B. Quesada, et al., “Parameter Extraction Methods for Assessing Device‐to‐Device and Cycle‐to‐Cycle Variability of Memristive Devices at Wafer Scale,” IEEE Transactions on Electron Devices 70 (2022): 360–365.
Z. Liao, Z. Huang, M. Xiao, Y. Meng, H. Yan, and Y. Liu, “Integrated Spatiotemporal Multiscale‐Multiphysics‐Uncertainty Simulation for Controlling Variability in RRAM Devices,” IEEE J Explor Solid (2025): 1–1.
H. Liu, M. Wei, and Y. Chen, “Optimization of Non‐linear Conductance Modulation Based on Metal Oxide Memristors,” Nanotechnology Reviews 7 (2018): 443–468.
J. Woo and S. Yu, “Resistive Memory‐Based Analog Synapse: The Pursuit for Linear and Symmetric Weight Update,” IEEE Nanotechnology Magazine 12 (2018): 36–44.
W. Sun, B. Gao, M. Chi, et al., “Understanding Memristive Switching via In Situ Characterization and Device Modeling,” Nature Communications 10 (2019): 3453.
U.‐B. Han, D. Lee, and J.‐S. Lee, “Reliable Current Changes with Selectivity Ratio Above 109 Observed in Lightly Doped Zinc Oxide Films,” NPG Asia Materials 9 (2017): 351.
B. P. S. Rathore, R. Prakash, and D. Kaur, “Effect of AlN Layer on the Resistive Switching Properties of TiO2 Based ReRAM Memory Devices,” Current Applied Physics 18 (2018): 102–106.
S. Maikap and A. Senapati, “Ru Conducting Filament Based Cross‐Point Resistive Switching Memory for Future Low Power Operation,” in 2020 IEEE Silicon Nanoelectronics Workshop (IEEE, 2020), 93–94.
H. Patil, H. Kim, S. Rehman, et al., “Stable and Multilevel Data Storage Resistive Switching of Organic Bulk Heterojunction,” Nanomaterials 11 (2021): 359.
Y. Park and J.‐S. Lee, “Bifunctional Silver‐Doped ZnO for Reliable and Stable Organic–Inorganic Hybrid Perovskite Memory,” ACS Applied Materials & Interfaces 13 (2020): 1021–1026.
K. Aratani, K. Ohba, T. Mizuguchi, et al., “A Novel Resistance Memory With High Scalability and Nanosecond Switching,” in 2007 IEEE International Electron Devices Meeting (IEEE, 2007), 783–786.
C. Schindler, S. C. P. Thermadam, R. Waser, and M. N. Kozicki, “Bipolar and Unipolar Resistive Switching in Cu‐Doped SiO2,” IEEE Transactions on Electron Devices 54 (2007): 2762–2768.
D. Xu, Y. Xiong, M. Tang, and B. Zeng, “Coexistence of the Bipolar and Unipolar Resistive Switching Behaviors in Vanadium Doped ZnO Films,” Journal of Alloys and Compounds 584 (2014): 269–272.
S.‐S. Li and Y.‐K. Su, “Conductive Filaments Controlled Ferromagnetism in Co‐Doped ZnO Resistive Switching Memory Device,” Japanese Journal of Applied Physics 58 (2019): SBBI01.
L. Hu, X. Tang, X. Luo, et al., “Forming‐free Unipolar Resistive Switching Behavior With Conical Conducting filaments in LaVO4 Thin Films,” Journal of Physics D: Applied Physics 49 (2016): 165308.
X.‐Y. Yuan, L.‐R. Luo, D. Wu, and Q.‐Y. Xu, “Bipolar Resistive Switching in BiFe0.95Zn0.05O3 films,” Chinese Physics B 22 (2013): 107702.
S. K. Vishwanath, H. Woo, and S. Jeon, “Enhancement of Resistive Switching Properties in Al2O3 Bilayer‐based Atomic Switches: Multilevel Resistive Switching,” Nanotechnology 29 (2018): 235202.
P.‐T. Liu, Y.‐S. Fan, and C.‐C. Chen, “Improvement of Resistive Switching Uniformity for Al–Zn–Sn–O‐Based Memory Device With Inserting HfO2 Layer,” IEEE Electron Device Letters 35 (2014): 1233–1235.
C.‐S. Lai, “Device Size Dependent Improved Resistive Switching Memory Performance Using W/TiN Contact,” Ieee Transactions on Nanotechnology 13 (2000): 409.
E. Yoo, J. Shin, T.‐S. Yoon, C. Kang, and Y. Choi, “Resistive Switching Characteristics of a Compact ZnO Nanorod Array Grown Directly on an Al‐Doped ZnO Substrate,” Journal of Physics D: Applied Physics 49 (2016): 295109.
K. Cho, S. Park, I. Chung, and S. Kim, “Effect of Oxidizable Electrode Material on Resistive Switching Characteristics of ZnOxS1−x Films,” Journal of Nanoscience and Nanotechnology 14 (2014): 8187.
D. Xue, H. Song, X. Zhong, et al., “Flexible Resistive Switching Device Based on the TiO2 Nanorod Arrays for Non‐volatile Memory Application,” Journal of Alloys and Compounds 822 (2020): 153552.
C. Kügeler, J. Zhang, S. Hoffmann‐Eifert, S. K. Kim, and R. Waser, “Nanostructured Resistive Memory Cells Based on 8‐nm‐thin TiO2 Films Deposited by Atomic Layer Deposition,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 29 (2011): 01AD01.
H. Y. Lee, P. S. Chen, T. Y. Wu, et al., “Low Power and High Speed Bipolar Switching With a Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM,” in 2008 IEEE International Electron Devices Meeting (IEEE, 2008), 1–4.
M. J. Lee, C. B. Lee, D. Lee, et al., “A Fast, High‐Endurance and Scalable Non‐Volatile Memory Device Made From Asymmetric Ta2O5−x/TaO2−x Bilayer Structures,” Nature Materials 10 (2011): 625–630.
I. G. Baek, M. S. Lee, S. Seo, et al., “Highly Scalable Nonvolatile Resistive Memory Using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses, IEDM Technical Digest,” in IEEE International Electron Devices Meeting (IEEE, 2004), 587–590.
Y. Wang, Z. He, X. Lai, et al., “Optical Erasable Bipolar Resistive Switching on TiO2 Film in Nanoscale,” Journal of Alloys and Compounds 873 (2021): 159809.
S. Xie, L. Pei, M. Y. Li, et al., “Light‐controlled Resistive Switching and Voltage‐Controlled Photoresponse Characteristics in the Pt/CeO2/Nb:SrTiO3 Heterostructure,” Journal of Alloys and Compounds 778 (2019): 141–147.
Y. Zhao, R. Su, L. Cheng, et al., “Ultra‐low Power Consumption and Favorable Reliability Mn‐Doped BiFeO3 Resistance‐Switching Devices via Tunable Oxygen Vacancy,” Ceramics International 49 (2023): 9090–9096.
R. Su, M. Cheng, A. Dong, et al., “Interface Barrier‐Induced Conversion of Resistive Switching Mechanism in Mn‐Doped BiFeO3 Memristor,” Applied Physics Letters 121 (2022): 203503.
R. Su, D. B. Chen, W. M. Cheng, et al., “Oxygen Vacancy Compensation‐Induced Analog Resistive Switching in the SrFeO3−δ/Nb:SrTiO3 Epitaxial Heterojunction for Noise‐Tolerant High‐Precision Image Recognition,” ACS Applied Materials & Interfaces 16 (2024): 54115–54128.
H. Wang, Z. Guan, J. Li, et al., “Silicon‐Compatible Ferroelectric Tunnel Junctions with a SiO2/Hf0.5Zr0.5O2 Composite Barrier as Low‐Voltage and Ultra‐High‐Speed Memristors,” Advanced Materials 36 (2024): 2211305.
S. Kabir, S. Nirantar, M. Monshipouri, et al., “Device Geometry Insights for Efficient Electrically Driven Insulator‐to‐Metal Transition in Vanadium Dioxide Thin‐Films,” Advanced Electronic Materials 8 (2022): 2100428.
X. Zhou, L. Zhao, W. Zhen, et al., “Phase‐Transition‐Induced VO2 Thin Film IR Photodetector and Threshold Switching Selector for Optical Neural Network Applications,” Advanced Electronic Materials 7 (2021): 2001254.
Y. J. Lee, K. Hong, K. Na, et al., “Nonvolatile Control of Metal–Insulator Transition in VO2 by Ferroelectric Gating,” Advanced Materials 34 (2022): 2203097.
Z. Li, Z. Li, W. Tang, et al., “Crossmodal Sensory Neurons Based on High‐Performance Flexible Memristors for Human‐Machine In‐Sensor Computing System,” Nature Communications 15 (2024): 7275.
L. Wang, Q. Zhang, L. Chang, et al., “Electrochemically Driven Giant Resistive Switching in Perovskite Nickelates Heterostructures,” Advanced Electronic Materials 3 (2017): 1700321.
Y. Taniguchi, H. B. Li, K. Shimoyama, A. N. Hattori, and H. Tanaka, “Epitaxial Growth of EuNiO3 on SrTiO3 and Its Application to Stacked Protonation Resistance Switching Devices,” Applied Physics Letters 122 (2023): 263502.
Z. Luo, Z. Wang, Z. Guan, et al., “High‐Precision and Linear Weight Updates by Subnanosecond Pulses in Ferroelectric Tunnel Junction for Neuro‐inspired Computing,” Nature Communications 13 (2022): 699.
E. Covi, H. Mulaosmanovic, B. Max, S. Slesazeck, and T. Mikolajick, “Ferroelectric‐Based Synapses and Neurons for Neuromorphic Computing,” Neuromorphic Computing and Engineering 2 (2022): 012002.
Q. Gao, A. Huang, J. Zhang, et al., “Artificial Synapses With a Sponge‐Like Double‐layer Porous Oxide Memristor,” NPG Asia Materials 13 (2021): 3.
P. Huang, Y. Wang, H. Li, et al., “Analysis of the Voltage–Time Dilemma of Metal Oxide‐Based RRAM and Solution Exploration of High Speed and Low Voltage AC Switching,” IEEE Transactions on Nanotechnology 13 (2014): 1127–1132.
M. Lanza, G. Molas, and I. Naveh, “The Gap Between Academia and Industry in Resistive Switching Research,” Nature Electronics 6 (2023): 260–263.
W. Lin, A. Adetomi, and T. Arslan, “Low‐Power Ultra‐Small Edge AI Accelerators for Image Recognition With Convolution Neural Networks: Analysis and Future Directions,” Electronics 10 (2021): 2048.
P. Alcamí and A. E. Pereda, “Beyond Plasticity: The Dynamic Impact of Electrical Synapses on Neural Circuits,” Nature Reviews Neuroscience 20 (2019): 253–271.
D. S. Faber and A. E. Pereda, “Two Forms of Electrical Transmission Between Neurons,” Frontiers in Molecular Neuroscience 11 (2018): 427.
A. Citri and R. C. Malenka, “Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms,” Neuropsychopharmacology 33 (2008): 18–41.
J. C. Magee and C. Grienberger, “Synaptic Plasticity Forms and Functions,” Annual Review of Neuroscience 43 (2020): 95–117.
D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory (Psychology Press, 2005).
S. H. Jo, T. Chang, I. Ebong, B. B. Bhadviya, P. Mazumder, and W. Lu, “Nanoscale Memristor Device as Synapse in Neuromorphic Systems,” Nano Letters 10 (2010): 1297–1301.
T. Ohno, T. Hasegawa, T. Tsuruoka, K. Terabe, J. K. Gimzewski, and M. Aono, “Short‐Term Plasticity and Long‐Term Potentiation Mimicked in Single Inorganic Synapses,” Nature Materials 10 (2011): 591–595.
A. Naidu, S. S. Nayak, S. Lulu S, and V. Sundararajan, “Advances in Computational Frameworks in the Fight Against TB: The Way Forward,” Frontiers in Pharmacology 14 (2023): 1152915.
J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S. Williams, “Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices,” Nature Nanotechnology 3 (2008): 429–433.
B. Rajendran and F. Alibart, “Neuromorphic Computing Based on Emerging Memory Technologies,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6 (2016): 198–211.
X.‐J. Wang, “Synaptic Reverberation Underlying Mnemonic Persistent Activity,” Trends in Neurosciences 24 (2001): 455–463.
J.‐W. Lin and D. S. Faber, “Modulation of Synaptic Delay During Synaptic Plasticity,” Trends in Neurosciences 25 (2002): 449–455.
M. Gilson, A. Burkitt, and J. L. van Hemmen, “STDP in Recurrent Neuronal Networks,” Frontiers in Computational Neuroscience 4 (2010): 23.
R. S. Zucker and W. G. Regehr, “Short‐Term Synaptic Plasticity,” Annual Review of Physiology 64 (2002): 355–405.
M. F. Bear and R. C. Malenka, “Synaptic Plasticity: LTP and LTD,” Current Opinion in Neurobiology 4 (1994): 389–399.
P. K. Stanton, “LTD, LTP, and the Sliding Threshold for Long‐term Synaptic Plasticity,” Hippocampus 6 (1996): 35–42.
G. Daoudal and D. Debanne, “Long‐term Plasticity of Intrinsic Excitability: Learning Rules and Mechanisms,” Learning & Memory 10 (2003): 456–465.
X. Chen, Z. Byambadorj, T. Yajima, H. Inoue, I. H. Inoue, and T. Iizuka, “CMOS‐Based Area‐and‐Power‐Efficient Neuron and Synapse Circuits for Time‐Domain Analog Spiking Neural Networks,” Applied Physics Letters 122 (2023): 074102.
Z. Yu‐Qi, W. Jun‐Jie, L. Zi‐Yu, and H. Su‐Ting, “Multimode Modulated Memristors for In‐Sensor Computing System,” Aata Phys Sin 71 (2022): 148502.
Z. Zhang, T. Li, Y. Wu, et al., “Truly Concomitant and Independently Expressed Short‐ and Long‐Term Plasticity in a Bi2O2 Se‐Based Three‐Terminal Memristor,” Advanced Materials 31 (2019): 1805769.
H. Nili, S. Walia, S. Balendhran, D. B. Strukov, M. Bhaskaran, and S. Sriram, “Nanoscale Resistive Switching in Amorphous Perovskite Oxide (a‐SrTiO3) Memristors,” Advanced Functional Materials 24 (2014): 6741–6750.
V. Mikheev, A. Chouprik, Y. Lebedinskii, et al., “Ferroelectric Second‐Order Memristor,” ACS Applied Materials & Interfaces 11 (2019): 32108–32114.
S. Kim, C. Du, P. Sheridan, W. Ma, S. Choi, and W. D. Lu, “Experimental Demonstration of a Second‐Order Memristor and Its Ability to Biorealistically Implement Synaptic Plasticity,” Nano Letters 15 (2015): 2203–2211.
C. C. Petersen, T. T. Hahn, M. Mehta, A. Grinvald, and B. Sakmann, “Interaction of Sensory Responses With Spontaneous Depolarization in Layer 2/3 Barrel Cortex,” Proceedings of the National Academy of Sciences 100 (2003): 13638–13643.
E. H. Baeg, Y. B. Kim, J. Jang, H. T. Kim, I. Mook‐Jung, and M. W. Jung, “Fast Spiking and Regular Spiking Neural Correlates of Fear Conditioning in the Medial Prefrontal Cortex of the Rat,” Cerebral Cortex 11 (2001): 441–451.
E. M. Izhikevich, “Neural Excitability, Spiking and Bursting,” International Journal of Bifurcation and Chaos 10 (2000): 1171–1266.
V. F. Descalzo, L. G. Nowak, J. C. Brumberg, D. A. McCormick, and M. V. Sanchez‐Vives, “Slow Adaptation in Fast‐spiking Neurons of Visual Cortex,” Journal of Neurophysiology 93 (2005): 1111–1118.
J. Benda, “Neural Adaptation,” Current Biology 31 (2021): R110–R116.
S. A. Baccus and M. Meister, “Fast and Slow Contrast Adaptation in Retinal Circuitry,” Neuron 36 (2002): 909–919.
R. Tremblay, S. Lee, and B. Rudy, “GABAergic Interneurons in the Neocortex: From Cellular Properties to Circuits,” Neuron 91 (2016): 260–292.
M. Häusser, “The Hodgkin‐Huxley Theory of the Action Potential,” Nature Neuroscience 3 (2000): 1165.
W. Foster, L. Ungar, and J. Schwaber, “Significance of Conductances in Hodgkin‐Huxley Models,” Journal of Neurophysiology 70 (1993): 2502–2518.
M. Nelson and J. Rinzel, “The Hodgkin‐Huxley Model,” The Book of GENESIS: Exploring Realistic Neural Models With the GEneral NEural SImulation System. (Springer, 1998).
K. Sidiropoulou, E. K. Pissadaki, and P. Poirazi, “Inside the Brain of a Neuron,” EMBO Reports 7 (2006): 886–892.
W. J. Freeman, “Mesoscopic Neurodynamics: From Neuron to Brain,” Journal of Physiology‐Paris 94 (2000): 303–322.
T. Branco and K. Staras, “The Probability of Neurotransmitter Release: Variability and Feedback Control at Single Synapses,” Nature Reviews Neuroscience 10 (2009): 373–383.
G. D. Smith, “Modeling the Stochastic Gating of Ion Channels,” Computational Cell Biology. (Springer, 2002).
W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition, (Cambridge University Press, 2014).
P. V. Carelli, M. B. Reyes, J. C. Sartorelli, and R. D. Pinto, “Whole Cell Stochastic Model Reproduces the Irregularities Found in the Membrane Potential of Bursting Neurons,” Journal of Neurophysiology 94 (2005): 1169–1179.
L. Paninski, J. W. Pillow, and E. P. Simoncelli, “Maximum Likelihood Estimation of a Stochastic Integrate‐and‐Fire Neural Encoding Model,” Neural Computation 16 (2004): 2533–2561.
S. Misra, L. C. Bland, S. G. Cardwell, et al., “Probabilistic Neural Computing with Stochastic Devices,” Advanced Materials 35 (2023): 2204569.
C. Gourieroux, A. Monfort, and A. Trognon, “Pseudo Maximum Likelihood Methods: Theory,” Econometrica 52 (1984): 681.
A. Masaki, Y. Hirai, and M. Yamada, “Neural Networks in CMOS: A Case Study,” IEEE Circuits and Devices Magazine 6 (2002): 12–17.
H. P. Graf and D. Henderson, “A Reconfigurable CMOS Neural Network,” in 1990 37th IEEE International Conference on Solid‐State Circuits (IEEE, 1990), 144–145.
A. Mehonic and A. J. Kenyon, “Emulating the Electrical Activity of the Neuron Using a Silicon Oxide RRAM Cell,” Frontiers in Neuroscience 10 (2016): 57.
A. Mikhaylov, A. Belov, D. Korolev, et al., “Multilayer Metal‐Oxide Memristive Device With Stabilized Resistive Switching,” Advanced Materials Technologies 5 (2020): 1900607.
S. Kumar, R. S. Williams, and Z. Wang, “Third‐Order Nanocircuit Elements for Neuromorphic Engineering,” Nature 585 (2020): 518–523.
M. Rahimi Azghadi, Y.‐C. Chen, J. K. Eshraghian, et al., “Complementary Metal‐Oxide Semiconductor and Memristive Hardware for Neuromorphic Computing,” Advanced Intelligent Systems 2 (2020): 1900189.
J. Ying, F. Min, and G. Wang, “Neuromorphic Behaviors of VO2 Memristor‐based Neurons,” Chaos, Solitons & Fractals 175 (2023): 114058.
H. Mao, Y. He, C. Chen, et al., “A Spiking Stochastic Neuron Based on Stacked InGaZnO Memristors,” Advanced Electronic Materials 8 (2022): 2100918.
A. A. Fida, S. Mittal, and F. A. Khanday, “Mott Memristor Based Stochastic Neurons for Probabilistic Computing,” Nanotechnology 35 (2024): 295201.
H. Xu, D. S. Shang, Q. Luo, et al., “A Low‐Power Vertical Dual‐Gate Neurotransistor With Short‐Term Memory for High Energy‐Efficient Neuromorphic Computing,” Nature Communications 14 (2023): 6385.
Z. Zhang, S. Mondal, S. Mandal, et al., “Neuromorphic Learning With Mott Insulator NiO,” PNAS (2021): 118.
P. U. Diehl and M. Cook, “Unsupervised Learning of Digit Recognition Using Spike‐Timing‐Dependent Plasticity,” Frontiers in Computational Neuroscience 9 (2015): 99.
H. T. Zhang, T. J. Park, I. A. Zaluzhnyy, et al., “Perovskite Neural Trees,” Nature Communications 11 (2020): 2245.
Z. Q. Wang, T. Zeng, Y. Y. Ren, et al., “Toward a Generalized Bienenstock‐Cooper‐Munro Rule for Spatiotemporal Learning via Triplet‐STDP in Memristive Devices,” Nature Communications 11 (2020): 1510.
T. J. Park, K. Selcuk, H. T. Zhang, et al., “Efficient Probabilistic Computing with Stochastic Perovskite Nickelates,” Nano Letters 22 (2022): 8654–8661.
F. Alibart, E. Zamanidoost, and D. B. Strukov, “Pattern Classification by Memristive Crossbar Circuits Using Ex Situ and In Situ Training,” Nature Communications 4 (2013): 2072.
M. Prezioso, F. Merrikh‐Bayat, B. D. Hoskins, G. C. Adam, K. K. Likharev, and D. B. Strukov, “Training and Operation of an Integrated Neuromorphic Network Based on Metal‐Oxide Memristors,” Nature 521 (2015): 61–64.
Y. H. Jang, W. Kim, J. Kim, et al., “Time‐Varying Data Processing With Nonvolatile Memristor‐Based Temporal Kernel,” Nature Communications 12 (2021): 5727.
S. C. Wang, Y. Li, D. C. Wang, et al., “Echo State Graph Neural Networks With Analogue Random Resistive Memory Arrays,” Nature Machine Intelligence 5 (2023): 104–113.
R. D. Nikam, M. Kwak, and H. Hwang, “All‐Solid‐State Oxygen Ion Electrochemical Random‐Access Memory for Neuromorphic Computing,” Advanced Electronic Materials 7 (2021): 2100142.
E. J. Fuller, F. E. Gabaly, F. Léonard, et al., “Li‐Ion Synaptic Transistor for Low Power Analog Computing,” Advanced Materials 29 (2016): 1604310.
S. Dutta, G. Detorakis, A. Khanna, B. Grisafe, E. Neftci, and S. Datta, “Neural Sampling Machine With Stochastic Synapse Allows Brain‐Like Learning and Inference,” Nature Communications 13 (2022): 2571.
S. Oh, Y. Shi, J. Del Valle, et al., “Energy‐Efficient Mott Activation Neuron for Full‐Hardware Implementation of Neural Networks,” Nature Nanotechnology 16 (2021): 680–687.
Q. Liu, W. Guan, S. Long, et al., “Resistance Switching of Au‐Implanted‐ZrO2 Film for Nonvolatile Memory Application,” Journal of Applied Physics 104 (2008): 114514.
W. Guan, S. Long, Q. Liu, M. Liu, and W. Wang, “Nonpolar Nonvolatile Resistive Switching in Cu Doped ZrO2,” IEEE Electron Device Letters 29 (2008): 434–437.
F. Zhuge, S. Peng, C. He, et al., “Improvement of Resistive Switching in Cu/ZnO/Pt Sandwiches by Weakening the Randomicity of the Formation/Rupture of Cu filaments,” Nanotechnology 22 (2011): 275204.
Y. Kim, C. Pham, and J. P. Chang, “Potentials and Challenges of Integration for Complex Metal Oxides in CMOS Devices and Beyond,” Journal of Physics D: Applied Physics (2015): 48.
Y. Ji, L. Wang, Y. Long, et al., “Ultralow Energy Adaptive Neuromorphic Computing Using Reconfigurable Zinc Phosphorus Trisulfide Memristors,” Nature Communications 16 (2025): 6899.
D. Kwon, S. Y. Woo, K. H. Lee, et al., “Reconfigurable Neuromorphic Computing Block Through Integration of Flash Synapse Arrays and Super‐steep Neurons,” Science Advances 9 (2023): adg9123.
W. Wang, W. Song, P. Yao, et al., “Integration and Co‐Design of Memristive Devices and Algorithms for Artificial Intelligence,” Iscience 23 (2020): 101809.
K. Zhang, J. Wang, Y. Huang, L.‐Q. Chen, P. Ganesh, and Y. Cao, “High‐Throughput Phase‐Field Simulations and Machine Learning of Resistive Switching in Resistive Random‐Access Memory,” npj Computational Materials 6 (2020): 198.
J. del Valle, J. G. Ramírez, M. J. Rozenberg, and I. K. Schuller, “Challenges in Materials and Devices for Resistive‐Switching‐Based Neuromorphic Computing,” Journal of Applied Physics 124 (2018): 211101.
D. Ju, M. Noh, G. Kim, J. Lee, and S. Kim, “Dynamic Memristor for Bioinspired Sensory Memory,” MRS Bulletin 50 (2025): 247–257.
Q. Lu, F. Sun, L. Liu, et al., “Biological Receptor‐Inspired Flexible Artificial Synapse Based on Ionic Dynamics,” Microsystems & Nanoengineering 6 (2020): 84.
Weitere Informationen
The human brain is a natural computing platform composed of a vast number of neurons and synapses that excels in learning, memory, and parallel data processing with low energy consumption and high efficiency. Brain-inspired hardware is crucial in the application of neural networks, offering enhanced energy efficiency, parallel processing capabilities, and nonlinear dynamic properties, such as adaptability and plasticity. Complex oxides exhibit rich electrically metastable states, which enable diverse resistive switching dynamics in response to electrical stimuli. This allows them to achieve complex bioinspired behaviors at the single-device level and more advanced brain-like functions through multidevice integration. This review summarizes recent advances in resistive switching of complex oxides with a focus on the underlying physical mechanisms and application-driven device-algorithm co-design. It first elucidates the materials science and multiscale mechanisms of the switchable electrical characteristics of complex oxides. Next, the resistive switching behaviors of complex oxide devices and a survey of their state-of-the-art performance are discussed. Additionally, from the perspective of brain-inspired computing, device-level biomimetic applications and task-driven circuit-algorithm co-designs are explored. Finally, the current challenges of complex oxide devices are summarized, and an outlook for the development of complex oxide neuromorphic devices is provided.
(© 2026 Wiley‐VCH GmbH.)