Treffer: Challenges and Opportunities in Machine Learning for Light-Emitting Polymers.
Original Publication: Basel ; Oxford, CT : Hüthig & Wepf, c1994-
J. Wei, Y. Liu, J. Yu, et al., “Conjugated Polymers: Optical Toolbox for Bioimaging and Cancer Therapy,” Small 17, no. 43 (2021): 2103127, https://doi.org/10.1002/smll.202103127.
C. Zhu, L. Liu, Q. Yang, F. Lv, and S. Wang, “Water‐Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy,” Chemical Reviews 112, no. 8 (2012): 4687–4735, https://doi.org/10.1021/cr200263w.
S. W. Thomas, G. D. Joly, and T. M. Swager, “Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers,” Chemical Reviews 107, no. 4 (2007): 1339–1386, https://doi.org/10.1021/cr0501339.
X. Feng, L. Liu, S. Wang, and D. Zhu, “Water‐Soluble Fluorescent Conjugated Polymers and Their Interactions With Biomacromolecules for Sensitive Biosensors,” Chemical Society Reviews 39, no. 7 (2010): 2411–2411, https://doi.org/10.1039/b909065g.
K. Matyjaszewski and J. Spanswick, “Controlled/Living Radical Polymerization,” Handbook of Polymer Synthesis (CRC Press, 2004).
N. Corrigan, K. Jung, G. Moad, C. J. Hawker, K. Matyjaszewski, and C. Boyer, “Reversible‐Deactivation Radical Polymerization (Controlled/Living Radical Polymerization): from Discovery to Materials Design and Applications,” Progress in Polymer Science 111 (2020): 101311–101311, https://doi.org/10.1016/j.progpolymsci.2020.101311.
Y. Bao, “Controlling Molecular Aggregation‐Induced Emission by Controlled Polymerization,” Molecules (Basel, Switzerland) 26, no. 20 (2021): 6267–6267, https://doi.org/10.3390/molecules26206267.
Y. Bao, “Polymerization‐Mediated through‐Space Charge Transfer: an Emerging Strategy for Light‐Emitting Materials,” Langmuir 40, no. 7 (2024): 3275–3282, https://doi.org/10.1021/acs.langmuir.3c03376.
S. Ye and Y. Bao, “Recent Advances in Fluorescent Polymers With Color‐Tunable Aggregate Emission,” Chemistry of Materials 36, no. 12 (2024): 5878–5896, https://doi.org/10.1021/acs.chemmater.3c02714.
J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al., “Light‐Emitting Diodes Based on Conjugated Polymers,” Nature 347, no. 6293 (1990): 539–541, https://doi.org/10.1038/347539a0.
A. C. Grimsdale, K. Leok Chan, R. E. Martin, P. G. Jokisz, and A. B. Holmes, “Synthesis of Light‐Emitting Conjugated Polymers for Applications in Electroluminescent Devices,” Chemical Reviews 109, no. 3 (2009): 897–1091, https://doi.org/10.1021/cr000013v.
H. Zheng, Y. Zheng, N. Liu, et al., “All‐Solution Processed Polymer Light‐Emitting Diode Displays,” Nature Communications 4, no. 1 (2013): 1971, https://doi.org/10.1038/ncomms2971.
C. Adachi and A. S. D. Sandanayaka, “The Leap From Organic Light‐Emitting Diodes to Organic Semiconductor Laser Diodes,” CCS Chemistry 2, no. 4 (2020): 1203–1216, https://doi.org/10.31635/ccschem.020.202000327.
C. M. Marian, “Understanding and Controlling Intersystem Crossing in Molecules,” Annual Review of Physical Chemistry 72, no. 1 (2021): 617–640, https://doi.org/10.1146/annurev‐physchem‐061020‐053433.
Z. Ma, L. Chen, J. Ding, L. Wang, X. Jing, and F. Wang, “Green Electrophosphorescent Polymers With Poly(3,6‐Carbazole) as the Backbone: A Linear Structure Does Realize High Efficiency with Poly(3,6‐Carbazole) as the Backbone: A Linear Structure Does Realize High Efficiency,” Advanced Materials 23, no. 32 (2011): 3726–3729, https://doi.org/10.1002/adma.201102140.
C. Mei, J. Ding, B. Yao, et al., “Synthesis and Characterization of White‐Light‐Emitting Polyfluorenes Containing Orange Phosphorescent Moieties in the Side Chain,” Journal of Polymer Science Part A: Polymer Chemistry 45, no. 9 (2007): 1746–1757, https://doi.org/10.1002/pola.21942.
S. Y. Lee, T. Yasuda, H. Komiyama, J. Lee, and C. Adachi, “Thermally Activated Delayed Fluorescence Polymers for Efficient Solution‐Processed Organic Light‐Emitting Diodes,” Advanced Materials 28, no. 21 (2016): 4019–4024, https://doi.org/10.1002/adma.201505026.
T. Wang, Y. Zou, Z. Huang, N. Li, J. Miao, and C. Yang, “Narrowband Emissive TADF Conjugated Polymers Towards Highly Efficient Solution‐Processible OLEDs,” Angewandte Chemie International Edition 61, no. 46 (2022): 202211172, https://doi.org/10.1002/anie.202211172.
T. Aimono, Y. Kawamura, K. Goushi, H. Yamamoto, H. Sasabe, and C. Adachi, “100% Fluorescence Efficiency of 4,4′‐Bis[(N‐Carbazole)Styryl]Biphenyl in a Solid Film and the Very Low Amplified Spontaneous Emission Threshold,” Applied Physics Letters 86, no. 7 (2005): 071110, https://doi.org/10.1063/1.1867555.
F. B. Dias, J. Santos, D. R. Graves, et al., “The Role of Local Triplet Excited States and D‐A Relative Orientation in Thermally Activated Delayed Fluorescence: Photophysics and Devices,” Advanced Science 3, no. 12 (2016): 1600080, https://doi.org/10.1002/advs.201600080.
Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, and C. Adachi, “Efficient Blue Organic Light‐Emitting Diodes Employing Thermally Activated Delayed Fluorescence,” Nature Photonics 8, no. 4 (2014): 326–332, https://doi.org/10.1038/nphoton.2014.12.
C. Murawski, K. Leo, and M. C. Gather, “Efficiency Roll‐Off in Organic Light‐Emitting Diodes,” Advanced Materials 25, no. 47 (2013): 6801–6827, https://doi.org/10.1002/adma.201301603.
S. Diesing, L. Zhang, E. Zysman‐Colman, and I. D. W. Samuel, “A Figure of Merit for Efficiency Roll‐off in TADF‐Based Organic LEDs,” Nature 627, no. 8005 (2024): 747–753, https://doi.org/10.1038/s41586‐024‐07149‐x.
J. M. Dos Santos, D. Hall, B. Basumatary, et al., “The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation,” Chemical Reviews 124, no. 24 (2024): 13736–14110, https://doi.org/10.1021/acs.chemrev.3c00755.
J. Hu, Q. Li, X. Wang, et al., “Developing Through‐Space Charge Transfer Polymers as a General Approach to Realize Full‐Color and White Emission With Thermally Activated Delayed Fluorescence,” Angewandte Chemie International Edition 58, no. 25 (2019): 8405–8409, https://doi.org/10.1002/anie.201902264.
S. Shao, J. Hu, X. Wang, L. Wang, X. Jing, and F. Wang, “Blue Thermally Activated Delayed Fluorescence Polymers With Nonconjugated Backbone and Through‐Space Charge Transfer Effect,” Journal of the American Chemical Society 139, no. 49 (2017): 17739–17742, https://doi.org/10.1021/jacs.7b10257.
Y. Xin, Y. Zhu, R. Chi, et al., “Phosphine‐Oxide‐Balanced Intra‐ and Interchain Through‐Space Charge Transfer in Thermally Activated Delayed Fluorescence Polymers: Beyond 30% External Quantum Efficiency,” Advanced Materials 35, no. 41 (2023): 2304103, https://doi.org/10.1002/adma.202304103.
J. Hu, Y. Chang, F. Chen, Q. Yang, S. Shao, and L. Wang, “Design, Synthesis, and Properties of <Scp>Polystyrene‐based through‐space</Scp>Charge Transfer Polymers: Effect of Triplet Energy Level of Electron Donor Moiety on Delayed Fluorescence and Electroluminescence Performance,” Journal of Polymer Science 60, no. 12 (2022): 1855–1863, https://doi.org/10.1002/pol.20210870.
Z. Ren, R. S. Nobuyasu, F. B. Dias, A. P. Monkman, S. Yan, and M. R. Bryce, “Pendant Homopolymer and Copolymers as Solution‐Processable Thermally Activated Delayed Fluorescence Materials for Organic Light‐Emitting Diodes,” Macromolecules 49, no. 15 (2016): 5452–5460, https://doi.org/10.1021/acs.macromol.6b01216.
“Cu(0)‐RDRP as An Efficient and Low‐Cost Synthetic Route to Blue‐Emissive Polymers for OLEDs,” Polymer Chemistry 10, no. 24 (2019): 3288–3297, https://doi.org/10.1039/c9py00294d.
H. Nakanotani, T. Higuchi, T. Furukawa, et al., “High‐Efficiency Organic Light‐Emitting Diodes With Fluorescent Emitters,” Nature Communications 5, no. 1 (2014): 4016, https://doi.org/10.1038/ncomms5016.
J. Hu, Y. Wang, Q. Li, et al., “Hyperfluorescent Polymers Enabled by Through‐Space Charge Transfer Polystyrene Sensitizers for High‐Efficiency and Full‐Color Electroluminescence,” Chemical Science 12, no. 39 (2021): 13083–13091, https://doi.org/10.1039/d1sc04389g.
R. Hu, A. Qin, and B. Z. Tang, “AIE Polymers: Synthesis and Applications,” Progress in Polymer Science 100 (2020): 101176, https://doi.org/10.1016/j.progpolymsci.2019.101176.
N. K. S. Teo, B. Fan, A. Ardana, and S. H. Thang, Aggregation‐Induced Emission Polymers via Reversible‐Deactivation Radical Polymerization (Aggregate, 2024), 414, https://doi.org/10.1002/agt2.414.
R. Hu, Y. Kang, and B. Z. Tang, “Recent Advances in AIE Polymers,” Polymer Journal 48, no. 4 (2016): 359–370, https://doi.org/10.1038/pj.2016.1.
X. Yang, R. Hu, and A. Qin, “Clusteroluminescent Polymers for Bio‐Applications,” European Polymer Journal 204 (2024): 112704, https://doi.org/10.1016/j.eurpolymj.2023.112704.
H. Zhang and B. Z. Tang, “Through‐Space Interactions in Clusteroluminescence,” JACS Au 1, no. 11 (2021): 1805–1814, https://doi.org/10.1021/jacsau.1c00311.
R. Hoffmann, “Interaction of Orbitals Through Space and Through Bonds,” Accounts of Chemical Research 4, no. 1 (1971): 1–9, https://doi.org/10.1021/ar50037a001.
P. Pasman, F. Rob, and J. W. Verhoeven, “Intramolecular Charge‐Transfer Absorption and Emission Resulting From Through‐Bond Interaction in Bichromophoric Molecules,” Journal of the American Chemical Society 104, no. 19 (1982): 5127–5133, https://doi.org/10.1021/ja00383a023.
H. Oevering, M. N. Paddon‐Row, M. Heppener, et al., “Long‐Long‐Range Photoinduced Through‐Bond Electron Transfer and Radiative Recombination via Rigid Nonconjugated Bridges: Distance and Solvent Dependence,” Journal of the American Chemical Society 109, no. 11 (1987): 3258–3269, https://doi.org/10.1021/ja00245a014.
Y. Liu, C. Li, Z. Ren, S. Yan, and M. R. Bryce, “All‐Organic Thermally Activated Delayed Fluorescence Materials for Organic Light‐Emitting Diodes,” Nature Reviews Materials 3, no. 4 (2018): 18020, https://doi.org/10.1038/natrevmats.2018.20.
T. Wang, Y. Cheng, and C. Yang, “Thermally Activated Delayed Fluorescence Polymers and Their Application in Organic Light‐Emitting Diodes,” Progress in Polymer Science 158 (2024): 101892, https://doi.org/10.1016/j.progpolymsci.2024.101892.
T. Hatakeyama, K. Shiren, K. Nakajima, et al., “Ultrapure Blue Thermally Activated Delayed Fluorescence Molecules: Efficient HOMO–LUMO Separation by the Multiple Resonance Effect,” Advanced Materials 28, no. 14 (2016): 2777–2781, https://doi.org/10.1002/adma.201505491.
F. Chen, L. Zhao, X. Wang, et al., “Novel Boron‐ and Sulfur‐Doped Polycyclic Aromatic Hydrocarbon as Multiple Resonance Emitter for Ultrapure Blue Thermally Activated Delayed Fluorescence Polymers,” Science China Chemistry 64, no. 4 (2021): 547–551, https://doi.org/10.1007/s11426‐020‐9944‐1.
S. Xu, Y. Duan, and B. Liu, “Precise Molecular Design for High‐Performance Luminogens With Aggregation‐Induced Emission,” Advanced Materials 32, no. 1 (2020): 1903530, https://doi.org/10.1002/adma.201903530.
J. Poisson, C. M. Tonge, N. R. Paisley, et al., “Exploring the Scope of Through‐Space Charge‐Transfer Thermally Activated Delayed Fluorescence in Acrylic Donor–Acceptor Copolymers,” Macromolecules 54, no. 5 (2021): 2466–2476, https://doi.org/10.1021/acs.macromol.0c02494.
S. Ye, T. Tian, A. J. Christofferson, et al., “Continuous Color Tuning of Single‐Fluorophore Emission via Polymerization‐Mediated Through‐Space Charge Transfer,” Science Advances 7, no. 15 (2021): abd1794, https://doi.org/10.1126/sciadv.abd1794.
W. Liu, C. Zhang, R. Alessandri, et al., “High‐Efficiency Stretchable Light‐Emitting Polymers from Thermally Activated Delayed Fluorescence,” Nature Materials 22, no. 6 (2023): 737–745, https://doi.org/10.1038/s41563‐023‐01529‐w.
W.‐L. Zhao, K.‐K. Tan, W.‐C. Guo, C.‐H. Guo, M. Li, and C.‐F. Chen, “Acceptor Copolymerized Axially Chiral Conjugated Polymers With TADF Properties for Efficient Circularly Polarized Electroluminescence,” Advanced Science 11, no. 23 (2024): 2309031, https://doi.org/10.1002/advs.202309031.
W. Liu, Y. Wu, A. Vriza, et al., “Depolymerizable and Recyclable Luminescent Polymers With High Light‐Emitting Efficiencies,” Nature Sustainability 7, no. 8 (2024): 1048–1056, https://doi.org/10.1038/s41893‐024‐01373‐z.
S. Ito, M. Gon, K. Tanaka, and Y. Chujo, “Recent Developments in Stimuli‐Responsive Luminescent Polymers Composed of Boron Compounds,” Polymer Chemistry 12, no. 44 (2021): 6372–6380, https://doi.org/10.1039/D1PY01170G.
W. Barford, “Light Emitting Polymers,” Electronic and Optical Properties of Conjugated Polymers, ed. W. Barford, (Oxford University Press, 2013), 0, https://doi.org/10.1093/acprof:oso/9780199677467.003.0009.
Y. Amamoto, “Data‐Driven Approaches for Structure‐Property Relationships in Polymer Science for Prediction and Understanding,” Polymer Journal 54, no. 8 (2022): 957–967, https://doi.org/10.1038/s41428‐022‐00648‐6.
W. Sha, Y. Li, S. Tang, et al., “Machine Learning in Polymer Informatics,” InfoMat 3, no. 4 (2021): 353–361, https://doi.org/10.1002/inf2.12167.
H. Doan Tran, C. Kim, L. Chen, et al., “Machine‐Learning Predictions of Polymer Properties With Polymer Genome,” Journal of Applied Physics 128, no. 17 (2020): 171104, https://doi.org/10.1063/5.0023759.
W. Ge, R. De Silva, Y. Fan, S. A. Sisson, and M. H. Stenzel, “Machine Learning in Polymer Research,” Advanced Materials 37, no. 11 (2025): 2413695, https://doi.org/10.1002/adma.202413695.
L. Chen, G. Pilania, R. Batra, et al., “Polymer Informatics: Current Status and Critical Next Steps,” Materials Science and Engineering: R: Reports 144 (2021): 100595, https://doi.org/10.1016/j.mser.2020.100595.
T. B. Martin and D. J. Audus, “Emerging Trends in Machine Learning: a Polymer Perspective,” ACS Polymers Au 3, no. 3 (2023): 239–258, https://doi.org/10.1021/acspolymersau.2c00053.
S. Ye, N. Meftahi, I. Lyskov, et al., “Machine Learning‐Assisted Exploration of a Versatile Polymer Platform With Charge Transfer‐Dependent Full‐Color Emission,” Chem 9, no. 4 (2023): 924–947, https://doi.org/10.1016/j.chempr.2022.12.003.
X. Niu, Q. Zhang, Y. Dang, W. Hu, and Y. Sun, “MolPackL: Quantification and Interpretation of Intermolecular Interactions Driven by Molecular Packing,” Journal of the American Chemical Society 146, no. 34 (2024): 24075–24084, https://doi.org/10.1021/jacs.4c08132.
P. B. Jørgensen, M. Mesta, S. Shil, et al., “Machine Learning‐Based Screening of Complex Molecules for Polymer Solar Cells,” The Journal of Chemical Physics 148, no. 24 (2018): 241735, https://doi.org/10.1063/1.5023563.
K. Kranthiraja, and A. Saeki, “Experiment‐Oriented Machine Learning of Polymer:Non‐Fullerene Organic Solar Cells,” Advanced Functional Materials 31, no. 23 (2021): 2011168, https://doi.org/10.1002/adfm.202011168.
D. Bajusz, A. Rácz, and K. Héberger, “Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching,” Comprehensive Medicinal Chemistry III (Elsevier, 2017), 329–378, https://doi.org/10.1016/B978‐0‐12‐409547‐2.12345‐5.
D. Rogers and M. Hahn, “Extended‐Connectivity Fingerprints,” Journal of Chemical Information and Modeling 50, no. 5 (2010): 742–754, https://doi.org/10.1021/ci100050t.
H. L. Morgan, “The Generation of a Unique Machine Description for Chemical Structures‐A Technique Developed at Chemical Abstracts Service,” Journal of Chemical Documentation 5, no. 2 (1965): 107–113, https://doi.org/10.1021/c160017a018.
J. L. Durant, B. A. Leland, D. R. Henry, and J. G. Nourse, “Reoptimization of MDL Keys for Use in Drug Discovery,” Journal of Chemical Information and Computer Sciences 42, no. 6 (2002): 1273–1280, https://doi.org/10.1021/ci010132r.
A. Capecchi, D. Probst, and J.‐L. Reymond, “One Molecular Fingerprint to Rule Them All: Drugs, Biomolecules, and the Metabolome,” Journal of Cheminformatics 12, no. 1 (2020): 43, https://doi.org/10.1186/s13321‐020‐00445‐4.
G. Chen, Z. Shen, A. Iyer, et al., “Machine‐Learning‐Assisted De Novo Design of Organic Molecules and Polymers: Opportunities and Challenges,” Polymers 12, no. 1 (2020): 163, https://doi.org/10.3390/polym12010163.
R. Wang, Y. Zhu, J. Fu, et al., “Designing Tailored Combinations of Structural Units in Polymer Dielectrics for High‐Temperature Capacitive Energy Storage,” Nature Communications 14, no. 1 (2023): 2406, https://doi.org/10.1038/s41467‐023‐38145‐w.
L. Chen, C. Kim, R. Batra, et al., “Frequency‐Dependent Dielectric Constant Prediction of Polymers Using Machine Learning,” Npj Computational Materials 6, no. 1 (2020): 61, https://doi.org/10.1038/s41524‐020‐0333‐6.
H. Li, H. Zheng, T. Yue, et al., “Machine Learning‐Accelerated Discovery of Heat‐Resistant Polysulfates for Electrostatic Energy Storage,” Nature Energy 10, no. 1 (2025): 90–100, https://doi.org/10.1038/s41560‐024‐01670‐z.
L. Zhang, N. Li, D. Liu, et al., “Deep Learning for Additive Screening in Perovskite Light‐Emitting Diodes,” Angewandte Chemie 134, no. 37 (2022): 202209337, https://doi.org/10.1002/ange.202209337.
Y. Mao, X. Yao, Z. Yu, Z. An, and H. Ma, “Ground‐State Orbital Descriptors for Accelerated Development of Organic Room‐Temperature Phosphorescent Materials,” Angewandte Chemie International Edition 63, no. 11 (2024): 202318836, https://doi.org/10.1002/anie.202318836.
J. Peng, S. Shen, W. Zhu, et al., “Ground‐State Descriptor Enables Machine Learning‐Assisted Virtual Screening of AIE‐Active Mechanofluorochromic Molecules With High Contrast,” Journal of Chemical Information and Modeling 65, no. 12 (2025): 5912–5920, https://doi.org/10.1021/acs.jcim.5c00658.
M. M. Cencer, J. S. Moore, and R. S. Assary, “Machine Learning for Polymeric Materials: an Introduction,” Polymer International 71, no. 5 (2022): 537–542, https://doi.org/10.1002/pi.6345.
R. Gómez‐Bombarelli, J. N. Wei, D. Duvenaud, et al., “Automatic Chemical Design Using a Data‐Driven Continuous Representation of Molecules,” ACS Central Science 4, no. 2 (2018): 268–276, https://doi.org/10.1021/acscentsci.7b00572.
R. Gómez‐Bombarelli, J. Aguilera‐Iparraguirre, T. Hirzel, et al., “Design of Efficient Molecular Organic Light‐Emitting Diodes by a High‐Throughput Virtual Screening and Experimental Approach,” Nature Materials 15, no. 10 (2016): 1120–1127, https://doi.org/10.1038/nmat4717.
K. T. Schütt, H. E. Sauceda, P.‐J. Kindermans, A. Tkatchenko, and K.‐R. Müller, “SchNet – A Deep Learning Architecture for Molecules and Materials,” Journal of Chemical Physics 148, no. 24 (2018): 241722, https://doi.org/10.1063/1.5019779.
J. Gasteiger, F. Becker, and S. G. N. Günnemann, “Universal Directional Graph Neural Networks for Molecules,” Advances in Neural Information Processing Systems (Curran Associates, Inc., 2021), 6790–6802.
L. Chanussot, A. Das, S. Goyal, et al., “Open Catalyst 2020 (OC20) Dataset and Community Challenges,” ACS Catalysis 11, no. 10 (2021): 6059–6072, https://doi.org/10.1021/acscatal.0c04525.
R. Tran, J. Lan, M. Shuaibi, et al., “The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts,” ACS Catalysis 13, no. 5 (2023): 3066–3084, https://doi.org/10.1021/acscatal.2c05426.
S. Kirklin, J. E. Saal, B. Meredig, et al., “The Open Quantum Materials Database (OQMD): Assessing the Accuracy of DFT Formation Energies,” Npj Computational Materials 1 (2015): 15010, https://doi.org/10.1038/npjcompumats.2015.10.
J. Park, Y. Shim, F. Lee, et al., “Prediction and Interpretation of Polymer Properties Using the Graph Convolutional Network,” ACS Polymers Au 2, no. 4 (2022): 213–222, https://doi.org/10.1021/acspolymersau.1c00050.
O. Queen, G. A. McCarver, S. Thatigotla, et al., “Polymer Graph Neural Networks for Multitask Property Learning,” Npj Computational Materials 9, no. 1 (2023): 90, https://doi.org/10.1038/s41524‐023‐01034‐3.
M. Aldeghi and C. W. Coley, “A Graph Representation of Molecular Ensembles for Polymer Property Prediction,” Chemical Science 13, no. 35 (2022): 10486–10498, https://doi.org/10.1039/D2SC02839E.
T. Xie and J. C. Grossman, “Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties,” Physical Review Letters 120, no. 14 (2018): 145301, https://doi.org/10.1103/PhysRevLett.120.145301.
R. Gurnani, C. Kuenneth, A. Toland, and R. Ramprasad, “Polymer Informatics at Scale With Multitask Graph Neural Networks,” Chemistry of Materials 35, no. 4 (2023): 1560–1567, https://doi.org/10.1021/acs.chemmater.2c02991.
S. Ye, D. Füglistaller, T. Tian, et al., “Lighting up Aggregate Emission of Perylene Diimide by Leveraging Polymerization‐Mediated Through‐Space Charge Transfer and π‐π Stacking,” Science China Chemistry 67, no. 12 (2024): 4218–4233, https://doi.org/10.1007/s11426‐024‐2032‐6.
D. Weininger, “SMILES, a Chemical Language and Information System. 1. Introduction to Methodology and Encoding Rules,” Journal of Chemical Information and Computer Sciences 28, no. 1 (1988): 31–36, https://doi.org/10.1021/ci00057a005.
R. Ma and T. Luo, “PI1M: a Benchmark Database for Polymer Informatics,” Journal of Chemical Information and Modeling 60, no. 10 (2020): 4684–4690, https://doi.org/10.1021/acs.jcim.0c00726.
T.‐S. Lin, C. W. Coley, H. Mochigase, et al., “BigSMILES: a Structurally‐Based Line Notation for Describing Macromolecules,” ACS Central Science 5, no. 9 (2019): 1523–1531, https://doi.org/10.1021/acscentsci.9b00476.
H. Qiu, and Z.‐Y. Sun, “Exploring SMILES and BigSMILES: toward Efficient and Scalable Polymer Representations for Machine Learning,” Macromolecules 58, no. 14 (2025): 7084–7093, https://doi.org/10.1021/acs.macromol.5c00604.
A. Vaswani, N. Shazeer, N. Parmar, et al., “Polosukhin, I. Attention Is All You Need,” arXiv (2023), https://doi.org/10.48550/arXiv.1706.03762.
H. Qiu, L. Liu, X. Qiu, X. Dai, X. Ji, and Z.‐Y. Sun, “PolyNC: a Natural and Chemical Language Model for the Prediction of Unified Polymer Properties,” Chemical Science 15, no. 2 (2024): 534–544, https://doi.org/10.1039/D3SC05079C.
W. G. Noid, J.‐W. Chu, G. S. Ayton, et al., “The Multiscale Coarse‐Graining Method. I. A Rigorous Bridge Between Atomistic and Coarse‐Grained Models,” The Journal of Chemical Physics 128, no. 24 (2008): 244114, https://doi.org/10.1063/1.2938860.
K. Shmilovich, R. A. Mansbach, H. Sidky, et al., “Discovery of Self‐Assembling π‐Conjugated Peptides by Active Learning‐Directed Coarse‐Grained Molecular Simulation,” The Journal of Physical Chemistry B 124, no. 19 (2020): 3873–3891, https://doi.org/10.1021/acs.jpcb.0c00708.
H. Ye, W. Xian, and Y. Li, “Machine Learning of Coarse‐Grained Models for Organic Molecules and Polymers: Progress, Opportunities, and Challenges,” ACS Omega 6, no. 3 (2021): 1758–1772, https://doi.org/10.1021/acsomega.0c05321.
X.‐Z. Zhang, R. Shi, Z.‐Y. Lu, and H.‐J. Qian, “Chemically Specific Systematic Coarse‐Grained Polymer Model With both Consistently Structural and Dynamical Properties,” JACS Au 4, no. 3 (2024): 1018–1030, https://doi.org/10.1021/jacsau.3c00756.
M. A. Webb, N. E. Jackson, P. S. Gil, and J. J. de Pablo, “Targeted Sequence Design within the Coarse‐Grained Polymer Genome,” Science Advances 6, no. 43 (2020): abc6216, https://doi.org/10.1126/sciadv.abc6216.
P. O. Dral and M. Barbatti, “Molecular Excited States Through a Machine Learning Lens,” Nature Reviews Chemistry 5, no. 6 (2021): 388–405, https://doi.org/10.1038/s41570‐021‐00278‐1.
S. A. S. Grimme, “A simplified Tamm‐Dancoff Density Functional Approach For The Electronic Excitation Spectra of Very Large Molecules,” The Journal of Chemical Physics 138, no. 24 (2013): 244104, https://doi.org/10.1063/1.4811331.
A. Manian, D. Pryor, Z. Chen, W. W. H. Wong, and S. P. Russo, “Simulating Thermally Activated Delayed Fluorescence Exciton Dynamics From First Principles,” Journal of Materials Chemistry C 13, no. 15 (2025): 7726–7740, https://doi.org/10.1039/D4TC05386A.
G. Bradford, J. Lopez, J. Ruža, et al., “Chemistry‐Informed Machine Learning for Polymer Electrolyte Discovery,” ACS Central Science 9, no. 2 (2023): 206–216, https://doi.org/10.1021/acscentsci.2c01123.
A. Dreuw and M. Head‐Gordon, “Single‐Reference Ab Initio Methods for the Calculation of Excited States of Large Molecules,” Chemical Reviews 105, no. 11 (2005): 4009–4037, https://doi.org/10.1021/cr0505627.
S. Otsuka, I. Kuwajima, J. Hosoya, Y. Xu, and M. Yamazaki, “Polymer Database for Polymeric Materials Design,” in 2011 International Conference on Emerging Intelligent Data and Web Technologies (IEEE, 2011), 22–29, https://doi.org/10.1109/EIDWT.2011.13.
T.‐S. Lin, N. J. Rebello, H. K. Beech, et al., “PolyDAT: a Generic Data Schema for Polymer Characterization,” Journal of Chemical Information and Modeling 61, no. 3 (2021): 1150–1163, https://doi.org/10.1021/acs.jcim.1c00028.
M. Tamasi, S. Kosuri, J. DiStefano, R. Chapman, and A. J. Gormley, “Automation of Controlled/Living Radical Polymerization,” Advanced Intelligent Systems 2, no. 2 (2020): 1900126, https://doi.org/10.1002/aisy.201900126.
J. Lee, P. Mulay, M. J. Tamasi, J. Yeow, M. M. Stevens, and A. J. Gormley, “A Fully Automated Platform for Photoinitiated RAFT Polymerization,” Digital Discovery 2, no. 1 (2023): 219–233, https://doi.org/10.1039/D2DD00100D.
I. Lignos, V. Morad, Y. Shynkarenko, et al., “Exploration of Near‐Infrared‐Emissive Colloidal Multinary Lead Halide Perovskite Nanocrystals Using an Automated Microfluidic Platform,” ACS Nano 12, no. 6 (2018): 5504–5517, https://doi.org/10.1021/acsnano.8b01122.
M. Ohno, Y. Hayashi, Q. Zhang, Y. Kaneko, and R. Yoshida, “SMiPoly: Generation of a Synthesizable Polymer Virtual Library Using Rule‐Based Polymerization Reactions,” Journal of Chemical Information and Modeling 63, no. 17 (2023): 5539–5548, https://doi.org/10.1021/acs.jcim.3c00329.
F. Häse, C. Kreisbeck, and A. Aspuru‐Guzik, “Machine Learning for Quantum Dynamics: Deep Learning of Excitation Energy Transfer Properties,” Chemical Science 8, no. 12 (2017): 8419–8426, https://doi.org/10.1039/C7SC03542J.
F. Ghalami, P. M. Dohmen, M. Krämer, M. Elstner, and W. Xie, “Nonadiabatic Simulation of Exciton Dynamics in Organic Semiconductors Using Neural Network‐Based Frenkel Hamiltonian and Gradients,” Journal of Chemical Theory and Computation 20, no. 14 (2024): 6160–6174, https://doi.org/10.1021/acs.jctc.4c00220.
E. Cignoni, L. Cupellini, and B. Mennucci, “Machine Learning Exciton Hamiltonians in Light‐Harvesting Complexes,” Journal of Chemical Theory and Computation 19, no. 3 (2023): 965–977, https://doi.org/10.1021/acs.jctc.2c01044.
Q. Peng and Z. Shuai, “Molecular Mechanism of Aggregation‐Induced Emission,” Aggregate 2, no. 5 (2021): 91, https://doi.org/10.1002/agt2.91.
Z. Shuai, Q. Sun, J. Ren, T. Jiang, and W. Li, “Excited State Structure and Decay Rates for Aggregates,” Aggregate 6, no. 4 (2025): 70013, https://doi.org/10.1002/agt2.70013.
F. Ren, X. Chen, and F. Liu, “Size‐Transferable Prediction of Excited State Properties for Molecular Assemblies With a Machine Learning Exciton Model,” The Journal of Physical Chemistry Letters 16, no. 10 (2025): 2541–2552, https://doi.org/10.1021/acs.jpclett.4c03548.
L. Gao, J. Lin, L. Wang, and L. Du, “Machine Learning‐Assisted Design of Advanced Polymeric Materials,” Accounts of Materials Research 5, no. 5 (2024): 571–584, https://doi.org/10.1021/accountsmr.3c00288.
M. A. T. Figueiredo, “Adaptive Sparseness for Supervised Learning,” IEEE Transactions on Pattern Analysis and Machine Intelligence 25, no. 9 (2003): 1150–1159, https://doi.org/10.1109/TPAMI.2003.1227989.
F. Burden and D. Winkler, “Bayesian Regularization of Neural Networks,” Artificial Neural Networks: Methods and Applications, ed. D. J. Livingstone, (Humana Press, 2009), 23–42, https://doi.org/10.1007/978‐1‐60327‐101‐1_3.
B. Kang, C. Seok, and J. Lee, “Prediction of Molecular Electronic Transitions Using Random Forests,” Journal of Chemical Information and Modeling 60, no. 12 (2020): 5984–5994, https://doi.org/10.1021/acs.jcim.0c00698.
M. Zeng, J. N. Kumar, Z. Zeng, R. Savitha, V. R. Chandrasekhar, and K. Hippalgaonkar, “Graph Convolutional Neural Networks for Polymers Property Prediction,” arXiv (2018), https://doi.org/10.48550/arXiv.1811.06231.
Q. Gao, T. Dukker, A. M. Schweidtmann, and J. M. Weber, “Self‐Supervised Graph Neural Networks for Polymer Property Prediction,” Molecular Systems Design & Engineering 9, no. 11 (2024): 1130–1143, https://doi.org/10.1039/D4ME00088A.
K. P. Greenman, W. H. Green, and R. Gómez‐Bombarelli, “Multi‐Fidelity Prediction of Molecular Optical Peaks With Deep Learning,” Chemical Science 13, no. 4 (2022): 1152–1162, https://doi.org/10.1039/d1sc05677h.
R. Hormázabal, J. W. Kang, K. Park, and D. R. Yang, “Not From Scratch: Predicting Thermophysical Properties Through Model‐Based Transfer Learning Using Graph Convolutional Networks,” Journal of Chemical Information and Modeling 62, no. 22 (2022): 5411–5424, https://doi.org/10.1021/acs.jcim.2c00846.
Z. Xiong, D. Wang, X. Liu, et al., “Pushing the Boundaries of Molecular Representation for Drug Discovery With the Graph Attention Mechanism,” Journal of Medicinal Chemistry 63, no. 16 (2019): 8749–8760, https://doi.org/10.1021/acs.jmedchem.9b00959.
B. Kwak, J. Park, T.‐W. Kang, J. Jo, B. Lee, and S. G. T. Yoon, “GeoT: A Geometry‐Aware Transformer for Reliable Molecular Property Prediction and Chemically Interpretable Representation Learning,” ACS Omega 8, no. 42 (2023): 39759–39769, https://doi.org/10.1021/acsomega.3c05753.
Q. Zhang, H. Zhang, Z. Su, Y. Sun, and W. Hu, “Discovering Molecular Insights in Organic Optoelectronics With Knowledge‐Informed Interpretable Deep Learning,” Journal of Chemical Theory and Computation 21, no. 14 (2025): 7111–7121, https://doi.org/10.1021/acs.jctc.5c00713.
W. Song, L. Xiong, X. Li, et al., “Fluor‐Predictor: An Interpretable Tool for Multiproperty Prediction and Retrieval of Fluorescent Dyes,” Journal of Chemical Information and Modeling 65, no. 6 (2025): 2854–2867, https://doi.org/10.1021/acs.jcim.5c00127.
X. Zhang, Y. Sheng, X. Liu, et al., “Polymer‐Unit Graph: Advancing Interpretability in Graph Neural Network Machine Learning for Organic Polymer Semiconductor Materials,” Journal of Chemical Theory and Computation 20, no. 7 (2024): 2908–2920, https://doi.org/10.1021/acs.jctc.3c01385.
D. Buterez, J. P. Janet, S. J. Kiddle, D. Oglic, and P. Liò, “Modelling Local and General Quantum Mechanical Properties With Attention‐Based Pooling,” Communications Chemistry 6, no. 1 (2023): 262, https://doi.org/10.1038/s42004‐023‐01045‐7.
N. E. Jackson, A. S. Bowen, and J. J. de Pablo, “Efficient Multiscale Optoelectronic Prediction for Conjugated Polymers,” Macromolecules 53, no. 1 (2020): 482–490, https://doi.org/10.1021/acs.macromol.9b02020.
M. Guo, W. Shou, L. Makatura, T. Erps, M. Foshey, and W. Matusik, “Polygrammar: Grammar for Digital Polymer Representation and Generation,” Advanced Science 9, no. 23 (2022): 2101864, https://doi.org/10.1002/advs.202101864.
M. J. Buehler, “Multiscale Modeling at the Interface of Molecular Mechanics and Natural Language Through Attention Neural Networks,” Accounts of Chemical Research 55, no. 23 (2022): 3387–3403, https://doi.org/10.1021/acs.accounts.2c00330.
T. Zhang and D.‐B. Yang, “Multimodal Machine Learning With Large Language Embedding Model for Polymer Property Prediction,” Chemistry of Materials 37, no. 18 (2025): 7002–7013, https://doi.org/10.1021/acs.chemmater.5c00940.
B. Sánchez‐Lengeling and A. Aspuru‐Guzik, “Inverse Molecular Design Using Machine Learning: Generative Models for Matter Engineering,” Science 361, no. 6400 (2018): 360–365, https://doi.org/10.1126/science.aat2663.
J. Wang, Y. Wang, and Y. Chen, “Inverse Design of Materials by Machine Learning,” Materials 15, no. 5 (2022): 1811, https://doi.org/10.3390/ma15051811.
K. Sattari, Y. Xie, and J. Lin, “Data‐Driven Algorithms for Inverse Design of Polymers,” Soft Matter 17, no. 33 (2021): 7607–7622, https://doi.org/10.1039/D1SM00725D.
A. G. Kusne, H. Yu, C. Wu, et al., “On‐the‐Fly Closed‐Loop Materials Discovery via Bayesian Active Learning,” Nature Communications 11, no. 1 (2020): 5966, https://doi.org/10.1038/s41467‐020‐19597‐w.
J. N. Kumar, Q. Li, K. Y. T. Tang, T. Buonassisi, A. L. Gonzalez‐Oyarce, and J. Ye, “Machine Learning Enables Polymer Cloud‐Point Engineering via Inverse Design,” Npj Computational Materials 5 (2019): 73, https://doi.org/10.1038/s41524‐019‐0209‐9.
L. Schneider, D. Walsh, B. Olsen, and J. Pablo, “Generative BigSMILES: an Extension for Polymer Informatics, Computer Simulations & ML/AI,” Digital Discovery 3, no. 1 (2024): 51–61, https://doi.org/10.1039/D3DD00147D.
R. Batra, H. Dai, T. D. Huan, et al., “Polymers for Extreme Conditions Designed Using Syntax‐Directed Variational Autoencoders,” Chemistry of Materials 32, no. 24 (2020): 10489–10500, https://doi.org/10.1021/acs.chemmater.0c03332.
S. Jiang, A. B. Dieng, and M. A. Webb, “Property‐Guided Generation of Complex Polymer Topologies Using Variational Autoencoders,” Npj Computational Materials 10, no. 1 (2024): 139, https://doi.org/10.1038/s41524‐024‐01328‐0.
G. Vogel, P. Sortino, and J. M. Weber, Graph‐to‐String Variational Autoencoder for Synthetic Polymer Design, https://openreview.net/forum?id=6E2qjEf7Rs.
M. Sumita, X. Yang, S. Ishihara, R. Tamura, and K. Tsuda, “Hunting for Organic Molecules With Artificial Intelligence: Molecules Optimized for Desired Excitation Energies,” ACS Central Science 4, no. 9 (2018): 1126–1133, https://doi.org/10.1021/acscentsci.8b00213.
H. Qiu and Z.‐Y. Sun, “On‐Demand Reverse Design of Polymers With PolyTAO,” Npj Computational Materials 10, no. 1 (2024): 273, https://doi.org/10.1038/s41524‐024‐01466‐5.
S. Seo, J. Lim, and W. Y. Kim, “Molecular Generative Model via Retrosynthetically Prepared Chemical Building Block Assembly,” Advanced Science 10, no. 8 (2023): 2206674, https://doi.org/10.1002/advs.202206674.
J. R. Kitchin, “Solving an Inverse Problem With Generative Models,” Digital Discovery 4, no. 7 (2025): 1856–1869, https://doi.org/10.1039/D5DD00137D.
Y. Hayashi, J. Shiomi, J. Morikawa, and R. Yoshida, “RadonPy: Automated Physical Property Calculation Using All‐Atom Classical Molecular Dynamics Simulations for Polymer Informatics,” Npj Computational Materials 8, no. 1 (2022): 222, https://doi.org/10.1038/s41524‐022‐00906‐4.
I. Batatia, D. P. Kovacs, G. Simm, C. Ortner, and G. M. Csanyi, “Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields,” Advances in Neural Information Processing Systems 35 (2022): 11423–11436.
B. M. Wood, M. Dzamba, X. Fu, et al., “A Family of Universal Models for Atoms,” arXiv (2025), https://doi.org/10.48550/arXiv.2506.23971.
N. J. Williams, L. Kabalan, L. Stojanovic, V. Zólyomi, and E. O. Pyzer‐Knapp, “Hessian QM: A Quantum Chemistry Database of Molecular Hessians in Implicit Solvents,” Scientific Data 12, no. 1 (2025): 9, https://doi.org/10.1038/s41597‐024‐04361‐2.
V. L. Deringer, A. P. Bartók, N. Bernstein, D. M. Wilkins, M. Ceriotti, and G. Cśanyi, “Gaussian Process Regression for Materials and Molecules,” Chemical Reviews 121, no. 16 (2021): 10073–10141, https://doi.org/10.1021/acs.chemrev.1c00022.
J. Musielewicz, X. Wang, T. Tian, and Z. Ulissi, “FINETUNA: Fine‐Tuning Accelerated Molecular Simulations,” Machine Learning: Science and Technology 3, no. 3 (2022): 03LT01, https://doi.org/10.1088/2632‐2153/ac8fe0.
X. Wang, J. Musielewicz, R. Tran, et al., “Generalization of Graph‐Based Active Learning Relaxation Strategies Across Materials,” Machine Learning: Science and Technology 5, no. 2 (2024): 025018, https://doi.org/10.1088/2632‐2153/ad37f0.
J. Vandermause, S. B. Torrisi, S. Batzner, et al., “On‐the‐Fly Active Learning of Interpretable Bayesian Force Fields for Atomistic Rare Events,” Npj Computational Materials 6, no. 1 (2020): 20, https://doi.org/10.1038/s41524‐020‐0283‐z.
D. Presti, L. Wilbraham, C. Targa, et al., “Understanding Aggregation‐Induced Emission in Molecular Crystals: Insights From Theory,” The Journal of Physical Chemistry C 121, no. 10 (2017): 5747–5752, https://doi.org/10.1021/acs.jpcc.7b00488.
Y. Jiang, Z. Yang, J. Guo, et al., “Coupling Complementary Strategy to Flexible Graph Neural Network for Quick Discovery of Coformer in Diverse Co‐Crystal Materials,” Nature Communications 12, no. 1 (2021): 5950, https://doi.org/10.1038/s41467‐021‐26226‐7.
S. H. M. Mehr, M. Craven, A. I. Leonov, G. Keenan, and L. Cronin, “A Universal System for Digitization and Automatic Execution of the Chemical Synthesis Literature,” Science 370, no. 6512 (2020): 101–108, https://doi.org/10.1126/science.abc2986.
M. Seifrid, F. Strieth‐Kalthoff, M. Haddadnia, et al., “Chemspyd: an Open‐Source Python Interface for Chemspeed Robotic Chemistry and Materials Platforms,” Digital Discovery 3, no. 7 (2024): 1319–1326, https://doi.org/10.1039/d4dd00046c.
Y. Fei, B. Rendy, R. E. Kumar, et al., “AlabOS: a Python‐Based Reconfigurable Workflow Management Framework for Autonomous Laboratories,” Digital Discovery 3, no. 11 (2024): 2275–2288, https://doi.org/10.1039/d4dd00129j.
B. J. Shields, J. M. Stevens, J. Li, et al., “Bayesian Reaction Optimization as a Tool for Chemical Synthesis,” Nature 590, no. 7844 (2021): 89–96, https://doi.org/10.1038/s41586‐021‐03213‐y.
M. Fitzner, A. Šošić, A. V. Hopp, et al., “BayBE: a Bayesian Back End for Experimental Planning in the Low‐to‐No‐Data Regime,” Digital Discovery 4, no. 8 (2025): 1991–2000, https://doi.org/10.1039/D5DD00050E.
P. Xu, X. Ji, M. Li, and W. Lu, “Small Data Machine Learning in Materials Science,” Npj Computational Materials 9, no. 1 (2023): 42, https://doi.org/10.1038/s41524‐023‐01000‐z.
N. H. Angello, D. Friday, C. Hwang, et al., “Closed‐Loop Transfer Enables Artificial Intelligence to Yield Chemical Knowledge,” Nature 633, no. 8029 (2024): 351–358, https://doi.org/10.1038/s41586‐024‐07892‐1.
F. Oviedo, J. L. Ferres, T. Buonassisi, and K. T. Butler, “Interpretable and Explainable Machine Learning for Materials Science and Chemistry,” Accounts of Materials Research 3, no. 6 (2022): 597–607, https://doi.org/10.1021/accountsmr.1c00244.
M. Cha, E. S. T. Emre, X. Xiao, et al., “Unifying Structural Descriptors for Biological and Bioinspired Nanoscale Complexes,” Nature Computational Science 2, no. 4 (2022): 243–252, https://doi.org/10.1038/s43588‐022‐00229‐w.
S.‐H. Hung, Z.‐R. Ye, C. Cheng, B. Chen, and M. Tsai, “Enhanced Predictions for the Experimental Photophysical Data Using the Featurized Schnet‐Bondstep Approach,” Journal of Chemical Theory and Computation 19, no. 14 (2023): 4559–4567, https://doi.org/10.1021/acs.jctc.3c00054.
G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang, “Physics‐Informed Machine Learning,” Nature Reviews Physics 3, no. 6 (2021): 422–440, https://doi.org/10.1038/s42254‐021‐00314‐5.
Weitere Informationen
Light-emitting polymers (LEPs) combine the luminescent properties of organic emitters with the structural versatility of polymers, supporting applications in solid-state display, chemical sensing, and bioimaging, owning to the efficient tuning of their performance across multiple scales, from monomer units and chain sequence to solid-state packing and solution processing. Recent strategies have expanded emission color space, improved quantum yields, and simplified design rules, evolving from traditional π-conjugated systems to mechanisms driven by aggregation and charge transfer. Yet this multiscale flexibility also creates a vast and complex design space, where the interplay of monomer choice, polymer architecture, and processing methods makes it impossible to exhaustively map their structure-property relationships by empirical means. In this perspective, we review the development of recent design strategies in LEPs, highlighting the key experimental challenges they reveal, and discuss how data-driven approaches, particularly machine learning, can help navigate this complexity and accelerate the discovery and optimization of next-generation LEPs.
(© 2026 The Author(s). Macromolecular Rapid Communications published by Wiley‐VCH GmbH.)