Treffer: A practical preprocessing pipeline for concurrent TMS-iEEG: Critical steps and methodological considerations.
J Neurosci Methods. 2024 Jul;407:110153. (PMID: 38710234)
Comput Intell Neurosci. 2011;2011:156869. (PMID: 21253357)
Psychophysiology. 2024 Jun;61(6):e14531. (PMID: 38297978)
J Neurosci Methods. 2022 Jul 1;376:109591. (PMID: 35421514)
Nat Rev Neurosci. 2012 May 18;13(6):407-20. (PMID: 22595786)
Brain Stimul. 2024 May-Jun;17(3):616-618. (PMID: 38729299)
Brain Stimul. 2024 May-Jun;17(3):698-712. (PMID: 38821396)
Mol Psychiatry. 2024 May;29(5):1228-1240. (PMID: 38317012)
J Neural Eng. 2024 Jul 26;21(4):. (PMID: 38981500)
Brain Stimul. 2013 May;6(3):371-6. (PMID: 22902312)
Neuroimage. 2018 Dec;183:327-335. (PMID: 30121338)
Neuroimage. 2017 Feb 15;147:934-951. (PMID: 27771347)
Biol Psychiatry. 2024 Mar 15;95(6):502-509. (PMID: 37979642)
J Neurosci Methods. 2018 Sep 1;307:125-137. (PMID: 29960028)
Neuroimage. 2022 Oct 15;260:119438. (PMID: 35792291)
Nat Neurosci. 2023 Apr;26(4):537-541. (PMID: 36894655)
Clin Neurophysiol. 2017 Sep;128(9):1563-1574. (PMID: 28709122)
Brain Stimul. 2025 Nov 14;19(1):102985. (PMID: 41241258)
PLoS Comput Biol. 2023 May 25;19(5):e1011105. (PMID: 37228169)
Neuroimage. 2018 Feb 15;167:104-120. (PMID: 29155184)
Philos Trans R Soc Lond B Biol Sci. 2014 Oct 5;369(1653):. (PMID: 25180306)
Brain Commun. 2023 Feb 07;5(1):fcad023. (PMID: 36824389)
Front Psychol. 2012 Jul 09;3:233. (PMID: 22787453)
Brain Stimul. 2023 Mar-Apr;16(2):567-593. (PMID: 36828303)
Nat Commun. 2022 Aug 20;13(1):4909. (PMID: 35987994)
PLoS Comput Biol. 2019 Nov 15;15(11):e1007316. (PMID: 31730613)
Hum Brain Mapp. 2018 Apr;39(4):1607-1625. (PMID: 29331054)
Brain Stimul. 2025 Jul-Aug;18(4):1202-1204. (PMID: 40516648)
Weitere Informationen
Transcranial magnetic stimulation combined with intracranial EEG (TMS-iEEG) has emerged as a powerful approach for probing the causal organization and dynamics of the human brain. Despite its promise, the presence of TMS-induced artifacts poses significant challenges for accurately characterizing and interpreting evoked neural responses. In this study, we present a practical preprocessing pipeline for single pulse TMS-iEEG data, incorporating key steps of re-referencing, filtering, artifact interpolation, and detrending. Using both real and simulated data, we systematically evaluated the effects of each step and compared alternative methodological choices. Our results demonstrate that this pipeline effectively attenuated various types of artifacts and noise, yielding cleaner signals for the subsequent analysis of intracranial TMS-evoked potentials (iTEPs). Moreover, we showed that methodological choices can substantially influence iTEPs outcomes. In particular, referencing methods might strongly affect iTEP morphology and amplitude, underscoring the importance of tailoring the referencing strategy to specific signal characteristics and research objectives. For filtering, we recommend a segment-based strategy, i.e., applying filters to data segments excluding the artifact window, to minimize distortion from abrupt TMS-related transients. Overall, this work represents an important step toward establishing a general preprocessing framework for TMS-iEEG data. We hope it encourages broader adoption and methodological development in concurrent TMS-iEEG research, ultimately advancing our understanding of brain organization and TMS mechanisms.
(Copyright © 2025 The Author(s). Published by Elsevier Inc. All rights reserved.)
Declaration of competing interest C.J.K. holds equity in Alto Neuroscience, Inc, and is a consultant for Flow Neuroscience.