Treffer: Texture Analysis of Histology Images for Characterizing Ultrasound-Stimulated Microbubble Radiation Enhancement Treatment Response.
Cells. 2023 Feb 02;12(3):. (PMID: 36766824)
Strahlenther Onkol. 2020 Oct;196(10):900-912. (PMID: 32821953)
Adv Drug Deliv Rev. 2017 Jan 15;109:74-83. (PMID: 26596559)
Br J Radiol. 2019 Sep;92(1101):20190286. (PMID: 31219712)
Proc Natl Acad Sci U S A. 2012 Jul 24;109(30):E2033-41. (PMID: 22778441)
Sci Rep. 2023 Mar 18;13(1):4487. (PMID: 36934140)
Radiother Oncol. 2021 Mar;156:281-293. (PMID: 33515668)
PLoS One. 2013 May 07;8(5):e61969. (PMID: 23667451)
J Appl Clin Med Phys. 2019 Jan;20(1):101-109. (PMID: 30474353)
Neurocomputing (Amst). 2016 May 26;191:214-223. (PMID: 28154470)
Transl Oncol. 2019 Oct;12(10):1271-1281. (PMID: 31325763)
Radiat Oncol. 2023 Mar 14;18(1):52. (PMID: 36918884)
Invest New Drugs. 2014 Aug;32(4):577-86. (PMID: 24682747)
Sci Rep. 2023 Dec 19;13(1):22687. (PMID: 38114526)
Clin Transl Radiat Oncol. 2020 Sep 11;25:46-51. (PMID: 33015380)
Front Oncol. 2025 Jan 27;15:1491848. (PMID: 39931089)
J Ther Ultrasound. 2013 May 01;1:6. (PMID: 24761227)
Dtsch Arztebl Int. 2011 Apr;108(16):274-80. (PMID: 21603562)
Eur Radiol Exp. 2018;2(1):11. (PMID: 29882527)
Dis Model Mech. 2014 Mar;7(3):363-72. (PMID: 24487407)
PLoS One. 2018 Jan 5;13(1):e0190883. (PMID: 29304105)
PLoS Med. 2019 Jan 24;16(1):e1002730. (PMID: 30677016)
Ther Adv Urol. 2022 Jul 4;14:17562872221109020. (PMID: 35814914)
Sci Rep. 2016 Jun 16;6:27988. (PMID: 27306927)
IEEE Trans Med Imaging. 1999 Mar;18(3):231-8. (PMID: 10363701)
BMC Med Imaging. 2024 Jul 19;24(1):177. (PMID: 39030508)
Clin Oncol (R Coll Radiol). 2021 Sep;33(9):e403-e411. (PMID: 33715936)
Microsc Microanal. 2015 Jun;21(3):646-54. (PMID: 25857827)
Clin Oncol (R Coll Radiol). 2018 Nov;30(11):720-727. (PMID: 30197095)
Weitere Informationen
Ultrasound-stimulated microbubble (USMB) therapy, in combination with radiotherapy (XRT), represents a promising approach to enhancing the efficacy of conventional cancer treatments by targeting tumor vasculature. Recent preclinical studies using MRI-guided focused ultrasound have demonstrated that USMB enhances radiation effects in tumor blood vessels, resulting in significantly greater tumor cell death than radiation alone. Dynamic contrast-enhanced MRI (DCE-MRI) has been instrumental in this methodology in mapping tumor perfusion heterogeneity, allowing for precise targeting of additional USMB and XRT to specific vascular regions. This study employed four advanced texture analysis methods, GLCM, GLDM, GLSZM, and NGTDM, to quantitatively assess changes in the cellular structure of prostate tumors following different treatments, including combinations of USMB and XRT targeted to low- and high-perfusion regions. Texture features, particularly those derived from GLCM, GLDM, and GLSZM, revealed significant differences in cell structure patterns across treatment groups. The GLSZM methodology was identified as the most sensitive method for detecting treatment-induced structural changes, effectively identifying regions of necrosis and varied stages of cell death. Texture-derivative analyses further highlighted intra-tumoral heterogeneity, especially in response to additional USMB + XRT treatments. These results align with findings in other tissue models, underscoring the value of texture analysis for monitoring treatment response.