Treffer: Methodological optimization for eliciting robust median nerve somatosensory evoked potentials for realtime single trial applications.

Title:
Methodological optimization for eliciting robust median nerve somatosensory evoked potentials for realtime single trial applications.
Authors:
Gupta D; National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, US. Department of Veterans Affairs, Albany, NY, United States of America.; Electrical & Computer Engineering Department, State University of Albany, Albany, NY, United States of America., Brangaccio J; National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, US. Department of Veterans Affairs, Albany, NY, United States of America., Hill NJ; National Center for Adaptive Neurotechnologies, Stratton VA Medical Center, US. Department of Veterans Affairs, Albany, NY, United States of America.; Electrical & Computer Engineering Department, State University of Albany, Albany, NY, United States of America.
Source:
Journal of neural engineering [J Neural Eng] 2026 Jan 09; Vol. 23 (1). Date of Electronic Publication: 2026 Jan 09.
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Institute of Physics Pub Country of Publication: England NLM ID: 101217933 Publication Model: Electronic Cited Medium: Internet ISSN: 1741-2552 (Electronic) Linking ISSN: 17412552 NLM ISO Abbreviation: J Neural Eng Subsets: MEDLINE
Imprint Name(s):
Original Publication: Bristol, U.K. : Institute of Physics Pub., 2004-
References:
J Neurosci Methods. 2009 Dec 15;185(1):108-15. (PMID: 19772874)
Psychophysiology. 2024 Jan;61(1):e14434. (PMID: 37668293)
J Neurophysiol. 1987 Feb;57(2):443-59. (PMID: 3559687)
Nature. 1975 Nov 27;258(5533):321-4. (PMID: 1196355)
Arch Phys Med Rehabil. 1999 May;80(5):562-5. (PMID: 10326922)
Brain. 1981 Sep;104(3):465-91. (PMID: 7272711)
Front Hum Neurosci. 2016 Mar 16;10:115. (PMID: 27014043)
Brain Topogr. 2002 Spring;14(3):179-89. (PMID: 12002348)
J Neural Eng. 2025 Mar 28;22(2):. (PMID: 40101361)
Electroencephalogr Clin Neurophysiol. 1988 Oct;70(4):313-24. (PMID: 2458240)
PLoS One. 2019 Jul 22;14(7):e0219854. (PMID: 31329615)
J Neurosurg. 1985 Oct;63(4):544-51. (PMID: 4032019)
Muscle Nerve. 2016 Sep;54(3):371-7. (PMID: 27238640)
J Vis Exp. 2022 Aug 25;(186):. (PMID: 36094287)
Lancet Neurol. 2014 Jan;13(1):100-12. (PMID: 24331796)
Clin Neurophysiol. 2003 Feb;114(2):376-90. (PMID: 12559247)
IEEE Trans Neural Syst Rehabil Eng. 2006 Jun;14(2):164-8. (PMID: 16792284)
Electroencephalogr Clin Neurophysiol. 1998 Mar;108(2):190-8. (PMID: 9566632)
Psychophysiology. 2013 Jan;50(1):97-110. (PMID: 23151171)
Front Neurol. 2024 Nov 19;15:1462882. (PMID: 39628896)
IEEE Trans Neural Syst Rehabil Eng. 2016 Jan;24(1):10-9. (PMID: 26742104)
J Neurosci. 2009 May 6;29(18):5784-92. (PMID: 19420246)
J Neurol. 2007 Mar;254(3):333-9. (PMID: 17345047)
Adv Biomed Res. 2013 Jul 30;2:56. (PMID: 24223371)
Biol Cybern. 2003 Dec;89(6):426-38. (PMID: 14673654)
Exp Brain Res. 2023 Jan;241(1):249-261. (PMID: 36481937)
Clin Neurophysiol Pract. 2016 Apr 07;1:18-25. (PMID: 30214955)
J Neuroeng Rehabil. 2020 May 19;17(1):66. (PMID: 32429963)
Noro Psikiyatr Ars. 2017 Dec;54(4):358-363. (PMID: 29321712)
J Chiropr Med. 2016 Jun;15(2):155-63. (PMID: 27330520)
J Clin Neurophysiol. 2011 Apr;28(2):170-7. (PMID: 21399512)
Neurosci Lett. 2000 Oct 27;293(2):83-6. (PMID: 11027839)
Ann N Y Acad Sci. 1982;388:359-68. (PMID: 6953876)
Neuroimage. 2011 May 15;56(2):814-25. (PMID: 20600976)
Arq Neuropsiquiatr. 2011 Aug;69(4):624-9. (PMID: 21877031)
Neuroimage. 2014 Mar;88:319-39. (PMID: 24333395)
Am J Phys Med Rehabil. 1999 Nov-Dec;78(6 Suppl):S53-62. (PMID: 10573099)
J Neurophysiol. 2018 Jan 1;119(1):134-144. (PMID: 28701541)
Hum Brain Mapp. 2001 Nov;14(3):166-85. (PMID: 11559961)
Clin Rehabil. 2019 May;33(5):834-846. (PMID: 30798643)
Eur J Appl Physiol. 2015 Dec;115(12):2505-19. (PMID: 26335625)
J Physiol. 2021 May;599(9):2453-2469. (PMID: 31215646)
Comput Methods Programs Biomed. 2020 Jul;191:105419. (PMID: 32151908)
Pacing Clin Electrophysiol. 1980 May;3(3):292-301. (PMID: 6160523)
Sci Rep. 2025 Jul 25;15(1):27161. (PMID: 40715225)
Int J Psychophysiol. 2017 Jan;111:156-169. (PMID: 27453051)
Clin Neurophysiol. 2008 Aug;119(8):1705-1719. (PMID: 18486546)
Electroencephalogr Clin Neurophysiol. 1992 Feb;85(1):22-9. (PMID: 1371740)
Brain. 1996 Aug;119 ( Pt 4):1099-105. (PMID: 8813274)
Minerva Anestesiol. 1989 Mar;55(3):119-22. (PMID: 2615975)
Restor Neurol Neurosci. 2016 Apr 11;34(4):571-86. (PMID: 27080070)
J Neurosci. 2012 Jun 27;32(26):9000-6. (PMID: 22745499)
IEEE Trans Biomed Eng. 2004 Jun;51(6):1034-43. (PMID: 15188875)
Muscle Nerve. 1998 Jan;21(1):48-54. (PMID: 9427223)
Clin Neurophysiol. 2006 Apr;117(4):810-4. (PMID: 16497550)
Ann Neurol. 2017 Nov;82(5):766-780. (PMID: 29034483)
Arch Phys Med Rehabil. 2004 Mar;85(3):405-8. (PMID: 15031825)
Brain Sci. 2023 Jul 21;13(7):. (PMID: 37509040)
Brain. 1996 Apr;119 ( Pt 2):439-47. (PMID: 8800939)
Clin Neurophysiol. 2011 Jul;122(7):1429-39. (PMID: 21296019)
Medicine (Baltimore). 2018 Nov;97(48):e13387. (PMID: 30508935)
Muscle Nerve. 1996 Apr;19(4):536-8. (PMID: 8622742)
Science. 1973 Oct 12;182(4108):177-80. (PMID: 4730062)
Electroencephalogr Clin Neurophysiol. 1981 Dec;52(6):517-30. (PMID: 6172252)
J Neurol Neurosurg Psychiatry. 1973 Feb;36(1):75-86. (PMID: 4348037)
Electroencephalogr Clin Neurophysiol Suppl. 1999;52:3-6. (PMID: 10590970)
Neurorehabil Neural Repair. 2011 May;25(4):304-13. (PMID: 21350049)
Spinal Cord. 2019 Nov;57(11):909-923. (PMID: 31337870)
Front Neurosci. 2014 Jul 22;8:208. (PMID: 25100937)
J Neurosci. 2006 Nov 29;26(48):12537-43. (PMID: 17135415)
J Physiol. 2004 Jul 1;558(Pt 1):341-9. (PMID: 15146048)
Muscle Nerve. 1985 Jun;8(5):402-8. (PMID: 16758586)
Neurorehabil Neural Repair. 2018 Oct;32(10):863-871. (PMID: 30198383)
Neurology. 1991 Dec;41(12):1972-7. (PMID: 1745357)
Neurorehabil Neural Repair. 2020 May;34(5):403-416. (PMID: 32391744)
Brain. 1991 Dec;114 ( Pt 6):2465-503. (PMID: 1782527)
Phys Ther. 1981 Jun;61(6):894-7. (PMID: 7243888)
Curr Opin Neurol. 2003 Dec;16(6):685-91. (PMID: 14624077)
Comput Biol Med. 2005 Nov;35(9):814-28. (PMID: 16278110)
Stroke. 2016 Jul;47(7):1879-84. (PMID: 27188405)
Comput Biol Med. 2025 Sep;195:110563. (PMID: 40554057)
J Clin Neurophysiol. 2009 Dec;26(6):458-60. (PMID: 19952573)
Front Rehabil Sci. 2021 Oct 12;2:742030. (PMID: 36188848)
Yale J Biol Med. 2012 Jun;85(2):201-15. (PMID: 22737049)
J Neurosci. 2013 Feb 6;33(6):2365-75. (PMID: 23392666)
Brain Res Bull. 2011 Mar 10;84(4-5):343-57. (PMID: 20728509)
Phys Ther. 2014 Sep;94(9):1220-31. (PMID: 24764072)
Anaesthesia. 1976 May;31(4):494-503. (PMID: 779513)
J Physiol. 2018 Mar 1;596(5):941-956. (PMID: 29285773)
Pain. 1988 Nov;35(2):205-213. (PMID: 3237434)
J Physiol. 1956 Feb 28;131(2):436-51. (PMID: 13320345)
J Neuroeng Rehabil. 2015 May 29;12:49. (PMID: 26021604)
Science. 1977 Aug 19;197(4305):792-5. (PMID: 887923)
Arch Phys Med Rehabil. 2021 Jan;102(1):115-131. (PMID: 32339483)
Arch Phys Med Rehabil. 2007 Nov;88(11):1369-76. (PMID: 17964875)
J Neural Eng. 2025 Sep 03;22(5):. (PMID: 40834866)
Clin Neurophysiol. 2001 Aug;112(8):1461-9. (PMID: 11459686)
J Clin Neurophysiol. 2007 Aug;24(4):358-62. (PMID: 17938606)
Arch Phys Med Rehabil. 1996 Jan;77(1):48-53. (PMID: 8554473)
J Neurosci Methods. 2004 Mar 15;134(1):9-21. (PMID: 15102499)
Bol Asoc Med P R. 2006 Jan-Mar;98(1):17-23. (PMID: 19610546)
Grant Information:
P41 EB018783 United States EB NIBIB NIH HHS
Contributed Indexing:
Keywords: brain computer interfacing; median nerve stimulation; pulse width; sensory nerve potentials; somatosensory evoked potentials; spinal cord injury
Entry Date(s):
Date Created: 20251224 Date Completed: 20260109 Latest Revision: 20260113
Update Code:
20260113
PubMed Central ID:
PMC12784216
DOI:
10.1088/1741-2552/ae30ac
PMID:
41439390
Database:
MEDLINE

Weitere Informationen

Objective. Single-trial measurement of median nerve somatosensory evoked potentials (SEPs) with noninvasive electroencephalography (EEG) is challenging due to low signal-to-noise ratio (SNR), limiting its use in real-time neurorehabilitation applications. We describe and evaluate methodological optimizations for eliciting reliable median nerve SEPs measurable in real time, with reduced reliance on post-processing. Methods. In twelve healthy participants, two sessions each, SEPs were assessed at three pulse widths (0.1, 0.5, 1 ms), at a low-frequency stimulation (0.5 Hz ± 10%), and at an intensity sufficient to evoke consistent and robust sensory nerve action potentials and compound muscle action potentials. The evoked potential operant conditioning system platform was used to monitor responses in real time. Feasibility was also evaluated in a participant with incomplete spinal cord injury (iSCI). Results. SEP P50 and N70 were reliably elicited in healthy participants, and in individual with iSCI, across all tested pulse widths with minimal discomfort. N70 amplitude increased significantly with pulse width (χ2= 17.64, p = 0.0001, w = 0.80), while P50 amplitude remained unchanged. SNR showed a significant pulse width-dependent increase (χ2= 7.82, p = 0.02, w = 0.35) with improvements of 40% and 52% at 0.5 and 1 ms, respectively. N70 single-trial separability significantly improved at 1 ms (AUC of 0.83,χ2= 8.17, p = 0.017), including the iSCI participant (0.84-less impaired hand, 0.79-more impaired hand). Test-retest reliability (intraclass correlation coefficient = 0.70-0.84, p < 0.05) was highest at 0.5 ms, indicating more consistent N70 and P50 measurements across sessions at a longer pulse width. Significance. Robust median nerve SEPs can be measured at single trials with methodological optimizations such as a longer pulse width (0.5-1 ms), low frequency (0.5 Hz), a consistent afferent excitation guided by nerve and muscle responses, and a robust EEG acquisition system. This setup can be useful for real time SEP-based brain computer interface applications for rehabilitation.
(Creative Commons Attribution license.)