Treffer: Exploring a Dynamic Template Matching Algorithm for the Automatic Extraction of P3 Latencies.
Original Publication: Baltimore, Williams & Wilkins.
Psychophysiology. 1981 May;18(3):207-15. (PMID: 7291436)
Psychophysiology. 2020 Jul;57(7):e13542. (PMID: 32030756)
Cogn Psychol. 2000 Aug;41(1):49-100. (PMID: 10945922)
Psychophysiology. 1981 Sep;18(5):493-513. (PMID: 7280146)
Psychophysiology. 2023 Feb;60(2):e14165. (PMID: 35995756)
Psychophysiology. 2011 Dec;48(12):1631-47. (PMID: 21895682)
J Exp Psychol Learn Mem Cogn. 2025 Nov 24;:. (PMID: 41284826)
Spat Vis. 1997;10(4):437-42. (PMID: 9176953)
Front Neurosci. 2018 Oct 25;12:765. (PMID: 30410431)
Psychophysiology. 2021 Jun;58(6):e13793. (PMID: 33782996)
Psychophysiology. 2015 Oct;52(10):1293-304. (PMID: 26238380)
J Neurosci Methods. 2004 Mar 15;134(1):9-21. (PMID: 15102499)
Psychophysiology. 2024 Feb;61(2):e14459. (PMID: 37950379)
Int J Psychophysiol. 2021 Jul;165:121-136. (PMID: 33901510)
Neuroimage. 2019 Sep;198:181-197. (PMID: 31103785)
J Exp Psychol Hum Percept Perform. 1987 Feb;13(1):89-103. (PMID: 2951490)
Psychophysiology. 2010 Mar 1;47(2):387-92. (PMID: 20003147)
Clin Neurophysiol. 2007 Oct;118(10):2128-48. (PMID: 17573239)
J Exp Psychol Gen. 2017 Oct;146(10):1498-1512. (PMID: 28703620)
Psychophysiology. 2008 Mar;45(2):250-74. (PMID: 17995913)
Front Neurosci. 2021 Jun 07;15:660449. (PMID: 34163321)
Psychol Bull. 1955 Jul;52(4):281-302. (PMID: 13245896)
Cortex. 2024 Jun;175:106-123. (PMID: 38519410)
Spat Vis. 1997;10(4):433-6. (PMID: 9176952)
Psychophysiology. 2023 Jul;60(7):e14264. (PMID: 36748399)
Psychophysiology. 2026 Jan;63(1):e70212. (PMID: 41436800)
PLoS One. 2022 Jun 8;17(6):e0268916. (PMID: 35675345)
IEEE Trans Pattern Anal Mach Intell. 1984 Mar;6(3):374-8. (PMID: 21869206)
Weitere Informationen
In this study, we explore a novel template matching algorithm using the grand average as a dynamic template to extract P3 latencies. This new algorithm outperforms peak latency and fractional area latency algorithms in both empirical as well as simulated data. A modified fractional area latency algorithm proposed by Liesefeld (2016, 2018) performed best among all previously employed approaches. It matched the performance of the template matching algorithms in the empirical data, but performed worse in the simulation. Template matching algorithms showed high agreement (ICC = 0.89) with latencies extracted by expert researchers and the most accurate recovery of simulated latency shifts (ICC = 0.91). Our results highlight the robustness of template matching algorithms across various tasks, preprocessing steps, and algorithm hyperparameters. Additionally, template matching provides a fit statistic that researchers can use to automatically discard ERPs with poor matches or flag certain ERPs for manual review. This fit statistic allows targeted manual intervention, increasing the efficiency and objectivity of latency extraction. Overall, the straightforward application of our template matching algorithm allows it to be easily integrated into multiverse studies or automated pipelines.
(© 2025 The Author(s). Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)