Treffer: Assessing the agreement of radiomic tools for dosiomics: A multi-software comparative study.

Title:
Assessing the agreement of radiomic tools for dosiomics: A multi-software comparative study.
Authors:
Bettinelli A; Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy., Marturano F; A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA., Pirrone G; Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy., Gioscio E; Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy., Avanzo M; Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy., Fanizzi A; Biostatistics and Bioinformatics Laboratory, IRCCS Istituto Tumori 'Giovanni Paolo II', Bari, Italy., Garibaldi C; Radiation Research Unit, IEO European Institute of Oncology, IRCCS, Milan, Italy., Massafra R; Biostatistics and Bioinformatics Laboratory, IRCCS Istituto Tumori 'Giovanni Paolo II', Bari, Italy., Menghi E; Medical Physics Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) 'Dino Amadori', Meldola, Italy., Placidi L; Diagnostic Imaging and Radiotherapy Oncology Department, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy., Rancati T; Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy., Paiusco M; Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy.
Source:
Medical physics [Med Phys] 2026 Jan; Vol. 53 (1), pp. e70203.
Publication Type:
Journal Article; Comparative Study
Language:
English
Journal Info:
Publisher: John Wiley and Sons, Inc Country of Publication: United States NLM ID: 0425746 Publication Model: Print Cited Medium: Internet ISSN: 2473-4209 (Electronic) Linking ISSN: 00942405 NLM ISO Abbreviation: Med Phys Subsets: MEDLINE
Imprint Name(s):
Publication: 2017- : Hoboken, NJ : John Wiley and Sons, Inc.
Original Publication: Lancaster, Pa., Published for the American Assn. of Physicists in Medicine by the American Institute of Physics.
References:
Lambin P, Leijenaar RTH, Deist TM, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749‐762. doi:10.1038/nrclinonc.2017.141.
Huang Y, Liu Z, He L, et al. Radiomics signature: a potential biomarker for the prediction of disease‐free survival in early‐stage (I or II) non‐small cell lung cancer. Radiology. 2016;281(3):947‐957. doi:10.1148/radiol.2016152234.
Coppola F, Mottola M, Lo Monaco S, et al. The heterogeneity of skewness in T2W‐Based radiomics predicts the response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Diagnostics. 2021;11(5):795. doi:10.3390/diagnostics11050795.
Guerrisi A, Loi E, Ungania S, et al. Novel cancer therapies for advanced cutaneous melanoma: the added value of radiomics in the decision making process–A systematic review. Cancer Med. 2020;9(5):1603‐1612. doi:10.1002/cam4.2709.
Avanzo M, Stancanello J, El Naqa I. Beyond imaging: the promise of radiomics. Phys Medica. 2017;38:122‐139. doi:10.1016/J.EJMP.2017.05.071.
Gillies RJ, Kinahan PE, Hricak H. Radiomics: images Are more than pictures, they are data. Radiology. 2016;278(2):563‐577. doi:10.1148/radiol.2015151169.
Mayerhoefer ME, Materka A, Langs G, et al. Introduction to radiomics. J Nucl Med. 2020;61(4):488‐495. doi:10.2967/JNUMED.118.222893.
Deasy JO. Data science opportunities to improve radiotherapy planning and clinical decision making. Semin Radiat Oncol. 2024;34(4):379‐394. doi:10.1016/J.SEMRADONC.2024.07.012.
Gianoli C, Bernardi ED, Parodi K. “Under the hood: artificial intelligence in personalized radiotherapy.” BJR Open. 2024;6(1):tzae017. doi:10.1093/BJRO/TZAE017.
Bogowicz M, Vuong D, Huellner MW, et al. CT radiomics and PET radiomics: ready for clinical implementation?. Q J Nucl Med Mol Imaging. 2019;63(4):355‐370. doi:10.23736/S1824‐4785.19.03192‐3.
Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol. 2018;102(4):1143‐1158. doi:10.1016/j.ijrobp.2018.05.053.
Yip SSF, Aerts HJWL. Applications and limitations of radiomics. Phys Med Biol. 2016;61(13):R150‐R166. doi:10.1088/0031‐9155/61/13/R150.
Zwanenburg A, Löck S. Why validation of prognostic models matters?. Radiother Oncol. 2018;127(3):370‐373. doi:10.1016/j.radonc.2018.03.004.
Zwanenburg A, Vallières M, Abdalah MA, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high‐throughput image‐based phenotyping. Radiology. 2020;295(2):328‐338. doi:10.1148/radiol.2020191145.
Zwanenburg A. GitHub—theibsi/data_sets: Data sets used by the IBSI for benchmarking and standardisation.
Ashrafinia S. Quantitative Nuclear Medicine Imaging Using Advanced Image Reconstruction and Radiomics. 2019. https://jscholarship.library.jhu.edu/bitstream/handle/1774.2/61551/ASHRAFINIA‐DISSERTATION‐2019.pdf?sequence=1.
Bettinelli A, Branchini M, De Monte F, Scaggion A, Paiusco M. Technical Note: an IBEX adaption toward image biomarker standardization. Med Phys. 2020;47(3):1167‐1173. doi:10.1002/mp.13956.
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational radiomics system to decode the radiographic phenotype. Cancer Res. 2017;77(21):e104‐e107. doi:10.1158/0008‐5472.CAN‐17‐0339.
Pfaehler E, Zwanenburg A, de Jong JR, Boellaard R. RACAT: an open source and easy to use radiomics calculator tool. PLoS One. 2019;14(2):1‐26. doi:10.1371/journal.pone.0212223.
Bettinelli A, Marturano F, Avanzo M, et al. A novel benchmarking approach to assess the agreement among radiomic tools. Radiology. 2022. doi:10.1148/radiol.211604.
Ma Z, Zhang J, Liu X, et al. Comparative analysis of repeatability in CT radiomics and dosiomics features under image perturbation: a study in cervical cancer patients. Cancers. 2024;16(16):2872. doi:10.3390/CANCERS16162872.
Foy JJ, Robinson KR, Li H, Giger ML, Al‐Hallaq H, Armato SG. Variation in algorithm implementation across radiomics software. J Med Imaging. 2018;5(04):1. doi:10.1117/1.JMI.5.4.044505.
Fornacon‐Wood I, Mistry H, Ackermann CJ, et al. Reliability and prognostic value of radiomic features are highly dependent on choice of feature extraction platform. Eur Radiol. 2020;30(11):6241‐6250. doi:10.1007/s00330‐020‐06957‐9.
McNitt‐Gray M, Napel S, Jaggi A, et al. Standardization in quantitative imaging: a multicenter comparison of radiomic features from different software packages on digital reference objects and patient data sets. Tomography. 2020;6(2):118‐128. doi:10.18383/j.tom.2019.00031.
Placidi L, Gioscio E, Garibaldi C, et al. A multicentre evaluation of dosiomics features reproducibility, stability and sensitivity. Cancers (Basel). 2021;13(15). doi:10.3390/cancers13153835.
Zwanenburg A, Leger S, Agolli L, et al. Assessing robustness of radiomic features by image perturbation. Sci Rep. 2019;9(1):1‐31. doi:10.1038/s41598‐018‐36938‐4.
PyRadiomics from the Computational Imaging & Bioinformatics Lab—Harvard Medical School. (Online).
Avanzo M, Pirrone G, Vinante L, et al. Electron Density and biologically effective dose (BED) radiomics‐based machine learning models to predict late radiation‐induced subcutaneous fibrosis. Front Oncol. 2020;10:490. doi:10.3389/fonc.2020.00490.
Oyibo P, Brynolfsson P, Spezi E. Integrating radiomic image analysis in the hero imaging platform. Cardiff Univ Press. 2024;23‐27. doi:10.18573/CONF3.G.
Mansouri Z, Salimi Y, Amini M, et al. Development and validation of survival prognostic models for head and neck cancer patients using machine learning and dosiomics and CT radiomics features: a multicentric study. Radiat Oncol. 2024;19(1):1‐13. doi:10.1186/s13014‐024‐02409‐6.
Cai C, Lv W, Chi F, et al. Prognostic generalization of multi‐level CT‐dose fusion dosiomics from primary tumor and lymph node in nasopharyngeal carcinoma. Med Phys. 2023;50(2):922‐934. doi:10.1002/mp.16044.
Busato F, Fiorentin D, Bettinelli A, et al. Dosiomic‐based prediction of dysgeusia in head & neck cancer patients treated with radiotherapy. Radiother Oncol. 2023;188:109896. doi:10.1016/j.radonc.2023.109896.
Zwanenburg A, Leger S, Vallières M, Löck S. The image biomarker standardisation initiative — IBSI 0.0.1dev documentation. 2019. Accessed November 24, 2021. https://ibsi.readthedocs.io/en/latest/.
Loi S, Mori M, Benedetti G, et al. Robustness of CT radiomic features against image discretization and interpolation in characterizing pancreatic neuroendocrine neoplasms. Phys Medica. 2020;76:125‐133. doi:10.1016/j.ejmp.2020.06.025.
Chen AM, Hall WH, Li BQ, et al. Intensity‐modulated radiotherapy increases dose to the brachial plexus compared with conventional radiotherapy for head and neck cancer. Br J Radiol. 2011;84(997):58‐63. doi:10.1259/bjr/62332495.
Merlotti A, Alterio D, Vigna‐Taglianti R, et al. Technical guidelines for head and neck cancer IMRT on behalf of the Italian association of radiation oncology—head and neck working group. Radiat Oncol. 2014;9(1):1‐32. doi:10.1186/s13014‐014‐0264‐9.
Bettinelli A. Repository for the study “Assessing the Agreement of Radiomic Tools for Dosiomics: A Multi‐Software Comparative Study”. doi:10.5281/zenodo.14548064.
Pyradiomics documentation. Accessed September 28, 2024. https://pyradiomics.readthedocs.io/en/latest/index.html.
Bettinelli A, Marturano F. ImSURE Phantoms. Figshare. doi:10.6084/m9.figshare.c.5625439.v2.
Liang ZG, Tan HQ, Zhang F, et al. Comparison of radiomics tools for image analyses and clinical prediction in nasopharyngeal carcinoma. Br J Radiol. 2019;92(1102). doi:10.1259/bjr.20190271.
Grant Information:
Ricerca Corrente Italian Ministry of Health
Contributed Indexing:
Keywords: dosiomics; feature reproducibility; radiotherapy dose distribution
Entry Date(s):
Date Created: 20251221 Date Completed: 20251221 Latest Revision: 20260120
Update Code:
20260120
PubMed Central ID:
PMC12719379
DOI:
10.1002/mp.70203
PMID:
41423685
Database:
MEDLINE

Weitere Informationen

Background: Radiomics involves extracting and analyzing quantitative imaging features to support medical decision-making, particularly in radiology and oncology. When applied to radiotherapy dose distributions, this approach, referred to as 'dosiomics', aims to identify the spatial dose patterns associated with treatment outcomes. However, software discrepancies in feature extraction may hinder reproducibility and limit the clinical adoption of radiomic/dosiomic models.
Purpose: This study presents the first comprehensive evaluation of software agreement and feature reproducibility across tools in the field of dosiomics, assessing seven feature-extraction tools. The evaluation focused on the impact of built-in image pre-processing steps (e.g., interpolation and discretization), feature-extraction configurations (i.e., aggregation methods), and the morphological characteristics of the regions of interest (ROIs), such as the presence of holes or disconnected components.
Materials and Methods: Five open-source programs (MIRP, S-IBEX, RaCaT, SERA, and PyRadiomics) and two proprietary tools (SPAARC and RadiomiCRO) were evaluated. The Image Biomarker Standardization Initiative (IBSI) digital phantom was used to preliminarily assess software IBSI-compliance and to identify and exclude features with inconsistent implementation from subsequent analyses. Dosiomic features were then extracted from a digital dataset comprising eight Intensity Modulated Radiation Therapy (IMRT) dose distributions emulating a head and neck radiotherapy plan (available in both isotropic and anisotropic formats) and 10 ROIs, following a systematic feature extraction framework. The effects of pre-processing parameters, feature-extraction configurations, and ROI morphological characteristics were analyzed systematically. The evaluation metrics included the percentage of matching features across software to the third significant digit, the Agreement metric, and the coefficient of variation (CV) to quantify both software performance and dosiomic feature variability across them.
Results: The preliminary IBSI-compliance evaluation showed that MIRP, S-IBEX, RaCaT, and SERA achieved over 94% matching features with IBSI benchmark values. In contrast, SPAARC, RadiomiCRO, and PyRadiomics demonstrated lower compliance due to non-computable features. On dose distributions, all tools exhibited high match percentages (>77%) for the isotropic dataset, which did not require software-specific interpolation. However, discrepancies increased significantly with program-specific interpolation for the anisotropic dose dataset, with match rates dropping to 14%. Agreement across software was consistently high for the isotropic dataset but notably lower for the anisotropic dataset. This trend was less evident when looking at the CV, which showed only a mild increase for the anisotropic format. Fixed bin size (FBS) discretization displayed lower Agreement and higher CV values, particularly in the cumulative intensity-volume histogram (IVH) feature family. High CV values were predominantly observed for some feature family-ROI combinations, including GLRLM, GLSZM, and NGLDM computed using 2.5D/3D aggregation methods. Additionally, we observed that some binary masks were incorrectly generated (e.g., without holes) when using the DICOM format, therefore, we relied on NRRD input files whenever possible, resulting in feature reproducibility remaining unaffected by this aspect.
Conclusion: The findings of this study indicate that, when properly configured, the tools show good overall agreement, with variability limited to specific features and pre-processing choices. While variations in program-specific resampling and FBS discretization implementation are present, their overall impact on dosiomic feature reproducibility remains minimal.
(© 2025 The Author(s). Medical Physics published by Wiley Periodicals LLC on behalf of American Association of Physicists in Medicine.)