Treffer: Green CO 2 -capture cluster model using bioengineering of carbonic anhydrase enzyme: QM and QM/QM' approach.
J Biosci Bioeng. 2016 Sep;122(3):314-21. (PMID: 27215831)
Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789. (PMID: 9944570)
Proteins. 1988;4(4):274-82. (PMID: 3151019)
Inorg Chem. 2014 Apr 7;53(7):3488-93. (PMID: 24635411)
Molecules. 2014 Sep 09;19(9):14139-94. (PMID: 25207718)
Bioorg Med Chem. 2013 Mar 15;21(6):1465-9. (PMID: 23078755)
Chem Rev. 2015 Jun 24;115(12):5678-796. (PMID: 25853797)
Biotechnol Bioeng. 1988 May 20;31(8):796-801. (PMID: 18584683)
Biotechnol Biotechnol Equip. 2015 Mar 4;29(2):205-220. (PMID: 26019635)
Nat Commun. 2023 Nov 2;14(1):7011. (PMID: 37919306)
J Comput Aided Mol Des. 1992 Dec;6(6):629-66. (PMID: 1291630)
Environ Sci Technol. 2025 Feb 04;59(4):1995-2005. (PMID: 39743509)
World J Microbiol Biotechnol. 2018 Sep 26;34(10):151. (PMID: 30259182)
J Chem Inf Model. 2024 May 13;64(9):3953-3958. (PMID: 38607669)
Curr Opin Biotechnol. 2022 Apr;74:230-240. (PMID: 34992045)
Bioresour Technol. 2011 Nov;102(22):10194-201. (PMID: 21974883)
ACS Omega. 2023 Oct 05;8(41):37830-37841. (PMID: 37867662)
ACS Omega. 2018 Aug 31;3(8):10391-10405. (PMID: 31459167)
Environ Sci Technol. 2013 Sep 3;47(17):10049-55. (PMID: 23883067)
Biotechnol Prog. 2018 May;34(3):767-777. (PMID: 29316370)
ACS Omega. 2023 May 09;8(20):17809-17818. (PMID: 37251154)
Crit Rev Biotechnol. 2015 Mar;35(1):15-28. (PMID: 23886350)
Small Sci. 2025 Jul 10;5(10):2500222. (PMID: 41058717)
Chem Soc Rev. 2013 Aug 7;42(15):6223-35. (PMID: 23532151)
J Chem Phys. 2010 Apr 21;132(15):154104. (PMID: 20423165)
Inorg Chem. 2018 Feb 19;57(4):2169-2174. (PMID: 29381346)
Phys Chem Chem Phys. 2025 Jan 29;27(5):2783-2801. (PMID: 39817551)
J Comput Chem. 2011 May;32(7):1456-65. (PMID: 21370243)
J Chem Phys. 2008 Feb 28;128(8):084106. (PMID: 18315032)
Biosensors (Basel). 2023 Feb 22;13(3):. (PMID: 36979517)
J Agric Food Chem. 2018 Jan 31;66(4):789-798. (PMID: 29323888)
J Phys Chem B. 2025 Feb 6;129(5):1475-1485. (PMID: 39874048)
Environ Sci Technol. 2024 Oct 8;58(40):17732-17742. (PMID: 39311668)
Chemosphere. 2012 Jun;87(10):1091-6. (PMID: 22397838)
Colloids Surf B Biointerfaces. 2021 Aug;204:111779. (PMID: 33901810)
EXS. 2000;(90):175-95. (PMID: 11268516)
EC 4.2.1.1 (Carbonic Anhydrases)
059QF0KO0R (Water)
0 (Solvents)
Weitere Informationen
The ongoing increase in anthropogenic CO <subscript>2</subscript> levels and global warming demonstrate serious risks to human society and the biosphere. Green CO <subscript>2</subscript> capture technologies that utilize the characteristics of enzymes such as carbonic anhydrase (CA), including low consumption, exceptional selectivity, and environmentally friendly nature, show significant promise. The hydration of CO <subscript>2</subscript> by the CA model was investigated using QM/QM' calculations. We performed a detailed theoretical study using density functional theory (B3LYP/6-31G* and B3LYP-D3/def2-TZPV/def2-ECP) by the cluster model approach. The hydration mechanisms were studied extensively in both gas and water solvent phases. Furthermore, explicit solvent effect was evaluated for water solvent using ONIOM (QM: QM') calculations, and all thermodynamic functions through the reaction path were calculated in different phases. The mechanism of CO <subscript>2</subscript> hydration exhibits the characteristics of an exothermic reaction, wherein the transition state resembles the reactant with a barrier height about of 6.35, 5.71, and 5.22 kcal.mol <sup>- 1</sup> for TS1, TS2, and TS3, respectively, in water solvent. These results reveal low energy barriers and favorable thermodynamic profiles in solvated environments. These findings support future research on CA hydration mechanisms and the development of a synthetic enzyme model, which may lead to a significant reduction of CO <subscript>2</subscript> emissions.
(© 2025. The Author(s).)
Declarations. Competing interests: The authors declare no competing interests.