Treffer: Machine learning-based predictive model for high- grade cytokine release syndrome in chimeric antigen receptor T-cell therapy.

Title:
Machine learning-based predictive model for high- grade cytokine release syndrome in chimeric antigen receptor T-cell therapy.
Authors:
Yu X; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Wang Q; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Halimulati T; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Lv J; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Zhou K; Department of General Surgery, The First Affiliated Hospital, Army Medical University, Chongqing, China., Chen G; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Yin L; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Liu Y; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Bi J; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Xiang Z; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China., Wang Q; Clinical Medicine Research Center, Shandong Second Provincial General Hospital, Jinan, China.
Source:
Frontiers in immunology [Front Immunol] 2025 Nov 20; Vol. 16, pp. 1692892. Date of Electronic Publication: 2025 Nov 20 (Print Publication: 2025).
Publication Type:
Comparative Study; Journal Article; Observational Study; Validation Study
Language:
English
Journal Info:
Publisher: Frontiers Research Foundation] Country of Publication: Switzerland NLM ID: 101560960 Publication Model: eCollection Cited Medium: Internet ISSN: 1664-3224 (Electronic) Linking ISSN: 16643224 NLM ISO Abbreviation: Front Immunol Subsets: MEDLINE
Imprint Name(s):
Original Publication: [Lausanne : Frontiers Research Foundation]
References:
J Oral Pathol Med. 2020 Nov;49(10):977-985. (PMID: 32740951)
Front Immunol. 2020 Jun 26;11:1626. (PMID: 32714336)
World J Clin Cases. 2020 Oct 6;8(19):4370-4379. (PMID: 33083396)
Sci Rep. 2019 Aug 14;9(1):11862. (PMID: 31413285)
Front Oncol. 2022 Dec 19;12:938292. (PMID: 36601485)
Trials. 2020 Sep 03;21(1):758. (PMID: 32883328)
Nature. 2020 Aug;584(7821):463-469. (PMID: 32717743)
Front Med (Lausanne). 2023 Jan 09;9:930541. (PMID: 36698845)
Cell. 2021 Jan 7;184(1):149-168.e17. (PMID: 33278357)
Anaesth Rep. 2021 Jan 13;9(1):16-19. (PMID: 33490954)
Case Rep Hematol. 2015;2015:640528. (PMID: 26124967)
Biomed Pharmacother. 2022 Jan;145:112243. (PMID: 34840031)
J Infect Dis. 2020 Oct 1;222(9):1444-1451. (PMID: 32601708)
Crit Rev Oncol Hematol. 2025 Dec;216:104969. (PMID: 41072894)
Sci Rep. 2022 Dec 2;12(1):20805. (PMID: 36460741)
Front Pharmacol. 2022 Oct 14;13:950923. (PMID: 36313336)
Blood Adv. 2021 Jan 26;5(2):593-601. (PMID: 33496754)
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:966-970. (PMID: 36086220)
Diabetes Metab Syndr. 2020 Nov-Dec;14(6):2245-2249. (PMID: 33395786)
Nat Mach Intell. 2020 Jan;2(1):56-67. (PMID: 32607472)
Blood Cancer J. 2021 Apr 6;11(4):69. (PMID: 33824268)
J Cell Mol Med. 2021 Dec;25(24):11063-11074. (PMID: 34734474)
Cancer. 2023 Jul 1;129(13):2035-2046. (PMID: 36991547)
Eur J Radiol. 2020 Nov;132:109336. (PMID: 33069986)
Cold Spring Harb Perspect Biol. 2014 Sep 04;6(10):a016295. (PMID: 25190079)
Front Immunol. 2022 Jan 28;13:807050. (PMID: 35154124)
Int J Infect Dis. 2022 Jul;120:88-95. (PMID: 35487339)
Trials. 2007 Jun 07;8:16. (PMID: 17555582)
J Med Internet Res. 2021 Feb 10;23(2):e24246. (PMID: 33476281)
J Thromb Haemost. 2020 Apr;18(4):844-847. (PMID: 32073213)
Int J Med Sci. 2021 Jan 14;18(5):1207-1215. (PMID: 33526982)
N Engl J Med. 2020 Dec 3;383(23):2255-2273. (PMID: 33264547)
Blood Coagul Fibrinolysis. 2023 Apr 1;34(3):179-183. (PMID: 36966807)
Bioinformatics. 2012 Jan 1;28(1):112-8. (PMID: 22039212)
Mediators Inflamm. 2022 Apr 6;2022:7137900. (PMID: 35431655)
J Inflamm Res. 2023 Dec 11;16:6055-6070. (PMID: 38107380)
F1000Res. 2021 Mar 22;10:228. (PMID: 35350705)
Bone Marrow Transplant. 2021 Jul;56(7):1642-1650. (PMID: 33608658)
Blood Rev. 2021 Jan;45:100707. (PMID: 32425294)
Br J Haematol. 2023 Apr;201(1):86-94. (PMID: 36503182)
Trop Med Infect Dis. 2020 Jul 03;5(3):. (PMID: 32635353)
Exp Biol Med (Maywood). 2022 May;247(9):734-742. (PMID: 35492022)
Lancet Respir Med. 2020 Jun;8(6):e46-e47. (PMID: 32353251)
Bone Marrow Transplant. 2021 Mar;56(3):570-580. (PMID: 32943758)
Sci Rep. 2023 Mar 9;13(1):3940. (PMID: 36894561)
Signal Transduct Target Ther. 2021 Oct 20;6(1):367. (PMID: 34667157)
Signal Transduct Target Ther. 2021 Jul 12;6(1):263. (PMID: 34248142)
PLoS One. 2022 May 19;17(5):e0268296. (PMID: 35588115)
Nat Med. 2020 Oct;26(10):1636-1643. (PMID: 32839624)
J Hematol Oncol. 2014 Jun 12;7:44. (PMID: 24919462)
Contributed Indexing:
Keywords: CAR-T therapy; COVID-19; XGBoost model; cytokine release syndrome; machine learning technique
Entry Date(s):
Date Created: 20251208 Date Completed: 20251215 Latest Revision: 20251215
Update Code:
20251216
PubMed Central ID:
PMC12675352
DOI:
10.3389/fimmu.2025.1692892
PMID:
41357188
Database:
MEDLINE

Weitere Informationen

Introduction: The development of robust predictive models for high-grade cytokine release syndrome (CRS) in CAR-T recipients remains limited by sparse clinical trial data.
Methods: We analyzed of 496 COVID-19 patients revealed that CRS plays a pivotal role in disease progression and serves as a valuable data source for understanding CRS progression. Building on this insight, we evaluated and compared the predictive performance of three machine learning models, with the ultimate goal of developing a predictive model for high-grade CRS in patients receiving CAR-T therapy.
Results: Among evaluated algorithms (XGBoost, Random Forest, Logistic Regression), XGBoost demonstrated superior performance in high-grade CRS prediction. Feature importance analysis identified SpO2, D-dimer, diastolic blood pressure, and INR as key predictors, enabling development of a validated riskassessment algorithm. In an independent CAR-T cohort (n=45), the algorithm achieved impressive predictive performance for high-grade CRS prediction.
Discussion: Using machine learning, we identified key clinical biomarkers strongly associated with high-grade CRS. This tool efficiently predicts progression to high-grade CRS post-onset and shows significant potential for clinical deployment in CAR-T therapy.
(Copyright © 2025 Yu, Wang, Halimulati, Lv, Zhou, Chen, Yin, Liu, Bi, Xiang and Wang.)

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.