Treffer: Tissue-type Differences in Focused Ultrasound and Microbubble-mediated Drug Delivery to the Brain Exist at Vessel Level.
Sci Rep. 2018 May 22;8(1):7986. (PMID: 29789589)
Ultrasound Med Biol. 2020 Dec;46(12):3339-3352. (PMID: 33008649)
Vasc Biol. 2023 Sep 06;5(1):. (PMID: 37582180)
Sci Rep. 2018 Aug 22;8(1):12573. (PMID: 30135559)
N Engl J Med. 2024 Jan 4;390(1):55-62. (PMID: 38169490)
Nat Biotechnol. 2018 Dec 17;:. (PMID: 30556815)
Nat Rev Clin Oncol. 2021 Nov;18(11):696-714. (PMID: 34253912)
Neurol Int. 2023 Feb 14;15(1):285-300. (PMID: 36810473)
Sci Rep. 2020 Apr 24;10(1):6952. (PMID: 32332821)
Nat Rev Clin Oncol. 2023 Jun;20(6):372-389. (PMID: 37085569)
J Cereb Blood Flow Metab. 2022 Jan;42(1):3-26. (PMID: 34551608)
Sci Rep. 2024 Feb 28;14(1):4831. (PMID: 38413663)
Nat Commun. 2021 Apr 12;12(1):2184. (PMID: 33846316)
Fluids Barriers CNS. 2022 Apr 11;19(1):29. (PMID: 35410231)
Nat Protoc. 2019 Dec;14(12):3506-3537. (PMID: 31748753)
Life Sci. 2021 Aug 1;278:119527. (PMID: 33887349)
Expert Opin Drug Deliv. 2013 Jul;10(7):907-26. (PMID: 23751126)
Expert Opin Drug Deliv. 2025 Jan;22(1):15-30. (PMID: 39625732)
IEEE Trans Biomed Eng. 2010 Jan;57(1):145-54. (PMID: 19846365)
IEEE Trans Biomed Eng. 2021 Aug;68(8):2499-2508. (PMID: 33360980)
Cell. 2023 Feb 16;186(4):693-714. (PMID: 36803602)
Neuroimage. 2022 Aug 15;257:119329. (PMID: 35609770)
Transl Oncol. 2024 Nov;49:102115. (PMID: 39217852)
J Cereb Blood Flow Metab. 2011 Sep;31(9):1852-62. (PMID: 21505473)
Sci Rep. 2019 Jul 18;9(1):10465. (PMID: 31320671)
J Cereb Blood Flow Metab. 2007 Feb;27(2):393-403. (PMID: 16685254)
Theranostics. 2024 Jul 2;14(10):4147-4160. (PMID: 38994025)
Cancer Res. 2012 Jul 15;72(14):3652-63. (PMID: 22552291)
J Cereb Blood Flow Metab. 2018 Aug;38(8):1339-1353. (PMID: 28589753)
Nat Commun. 2020 Feb 27;11(1):1104. (PMID: 32107377)
Clin Cancer Res. 2006 Feb 1;12(3 Pt 1):904-16. (PMID: 16467105)
Int J Nanomedicine. 2014 Sep 19;9:4485-94. (PMID: 25278753)
Medicine (Baltimore). 2024 Feb 23;103(8):e37297. (PMID: 38394496)
Pharmaceuticals (Basel). 2025 Apr 03;18(4):. (PMID: 40283959)
Biomedicines. 2024 Nov 26;12(12):. (PMID: 39767605)
Phys Med Biol. 2014 Oct 21;59(20):5987-6004. (PMID: 25230100)
Front Physiol. 2020 Oct 16;11:584891. (PMID: 33178048)
Neuroimage Clin. 2021;31:102735. (PMID: 34247117)
J Cereb Blood Flow Metab. 1996 Mar;16(2):296-302. (PMID: 8594062)
Ultrasonics. 2022 Aug;124:106742. (PMID: 35381523)
J Control Release. 2024 Aug;372:901-913. (PMID: 38971426)
Ultrasound Med Biol. 2006 Sep;32(9):1399-409. (PMID: 16965980)
Trends Mol Med. 2024 Mar;30(3):263-277. (PMID: 38216449)
Neural Regen Res. 2022 Sep;17(9):2058-2063. (PMID: 35142697)
Adv Drug Deliv Rev. 2022 Nov;190:114539. (PMID: 36116720)
Mol Ther Nucleic Acids. 2024 Dec 12;36(1):102426. (PMID: 39850318)
Angiogenesis. 2020 Feb;23(1):9-16. (PMID: 31679081)
J Control Release. 2011 Feb 28;150(1):111-6. (PMID: 21070825)
Histochem Cell Biol. 2015 Feb;143(2):225-34. (PMID: 25534591)
Ageing Res Rev. 2025 Jun;108:102756. (PMID: 40254145)
Cold Spring Harb Perspect Biol. 2015 Jan 05;7(1):a020412. (PMID: 25561720)
J Neurooncol. 2024 Nov;170(2):235-252. (PMID: 39207625)
iScience. 2023 May 26;26(6):106965. (PMID: 37378309)
Bioinformatics. 2016 Nov 15;32(22):3532-3534. (PMID: 27412086)
J Opt Soc Am A Opt Image Sci Vis. 2023 Apr 1;40(4):C8-C15. (PMID: 37132946)
Sci Rep. 2021 Feb 24;11(1):4412. (PMID: 33627726)
J Cereb Blood Flow Metab. 2020 Mar;40(3):501-512. (PMID: 30829101)
J Clin Psychiatry. 2024 Jun 24;85(3):. (PMID: 38959503)
JAMA. 2023 Feb 21;329(7):574-587. (PMID: 36809318)
Theranostics. 2019 Aug 14;9(21):6284-6299. (PMID: 31534551)
Nat Rev Cancer. 2020 Jan;20(1):26-41. (PMID: 31601988)
Br J Radiol. 2014 Jun;87(1038):20130670. (PMID: 24702152)
Ultrasound Med Biol. 2013 Apr;39(4):620-7. (PMID: 23384461)
Nat Neurosci. 2021 Sep;24(9):1198-1209. (PMID: 34354283)
Ultrasound Med Biol. 2004 Jul;30(7):979-89. (PMID: 15313330)
J Control Release. 2025 May 10;381:113631. (PMID: 40096865)
Sci Rep. 2017 Apr 20;7:46689. (PMID: 28425493)
NeuroRx. 2005 Jan;2(1):3-14. (PMID: 15717053)
Signal Transduct Target Ther. 2023 May 25;8(1):217. (PMID: 37231000)
Int J Mol Sci. 2023 Oct 10;24(20):. (PMID: 37894718)
J Neurosci. 2012 Jan 4;32(1):356-71. (PMID: 22219296)
Neurodegener Dis Manag. 2023 Feb;13(1):47-70. (PMID: 36314777)
Front Pharmacol. 2024 Mar 08;15:1355242. (PMID: 38523646)
BMB Rep. 2020 Nov;53(10):491-499. (PMID: 32731916)
Phys Med Biol. 2010 Sep 21;55(18):5251-67. (PMID: 20720286)
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20. (PMID: 20378467)
Trends Neurosci. 2024 Jan;47(1):47-57. (PMID: 38052682)
Annu Rev Immunol. 2017 Apr 26;35:441-468. (PMID: 28226226)
Am J Physiol Heart Circ Physiol. 2016 Jun 1;310(11):H1702-14. (PMID: 27059078)
BMC Cancer. 2023 Jun 14;23(1):544. (PMID: 37316802)
Sci Rep. 2020 Dec 9;10(1):21534. (PMID: 33299094)
Sci Adv. 2021 Feb 5;7(6):. (PMID: 33547073)
Nucl Med Biol. 2013 Aug;40(6):831-40. (PMID: 23915802)
Drug Metab Dispos. 2013 Mar;41(3):659-67. (PMID: 23297298)
J Neurosurg. 2019 Feb 1;132(3):875-883. (PMID: 30717050)
Pharm Res. 2023 Nov;40(11):2731-2746. (PMID: 37589827)
J Cereb Blood Flow Metab. 2017 Oct;37(10):3355-3367. (PMID: 28350253)
Ann Indian Acad Neurol. 2019 Apr-Jun;22(2):187-194. (PMID: 31007431)
Pharmacol Res. 2003 Oct;48(4):347-59. (PMID: 12902205)
Med Image Anal. 2008 Feb;12(1):26-41. (PMID: 17659998)
Front Aging Neurosci. 2019 Oct 22;11:289. (PMID: 31695607)
Pharmaceuticals (Basel). 2021 Jan 26;14(2):. (PMID: 33530460)
BMC Neurol. 2009 Jun 12;9 Suppl 1:S3. (PMID: 19534732)
Brain. 2023 Apr 19;146(4):1281-1298. (PMID: 36445396)
Neuro Oncol. 2021 Aug 2;23(8):1231-1251. (PMID: 34185076)
Phys Med Biol. 2023 Sep 08;68(18):. (PMID: 37369229)
Acta Neuropathol Commun. 2019 Feb 7;7(1):16. (PMID: 30732655)
Expert Opin Biol Ther. 2023 Jul-Dec;23(7):603-618. (PMID: 37334564)
Neoplasia. 2018 Jul;20(7):710-720. (PMID: 29852323)
Expert Opin Drug Deliv. 2024 Jan-Jun;21(1):71-89. (PMID: 38217410)
Int J Nanomedicine. 2012;7:965-74. (PMID: 22393293)
J Neuropathol Exp Neurol. 2022 Apr 27;81(5):312-329. (PMID: 35446393)
Cells. 2019 Aug 09;8(8):. (PMID: 31405017)
Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):. (PMID: 34504017)
Ultrasound Med Biol. 2008 Jul;34(7):1093-104. (PMID: 18378064)
Ultrasound Med Biol. 2007 Apr;33(4):584-90. (PMID: 17337109)
Cells. 2024 Feb 05;13(3):. (PMID: 38334678)
J Am Soc Echocardiogr. 2003 Nov;16(11):1178-85. (PMID: 14608290)
J Chem Neuroanat. 2018 Mar;88:22-32. (PMID: 29113946)
Mol Psychiatry. 2020 Apr;25(4):883-895. (PMID: 31780770)
Radiology. 2010 May;255(2):415-25. (PMID: 20413754)
J Control Release. 2024 May;369:506-516. (PMID: 38575074)
J Neurooncol. 2023 Dec;165(3):535-545. (PMID: 38060066)
Radiology. 2012 Apr;263(1):96-106. (PMID: 22332065)
Ultrasonics. 2010 Feb;50(2):273-9. (PMID: 19896683)
Front Cell Neurosci. 2021 Jun 30;15:696540. (PMID: 34276312)
J Ultrasound Med. 2020 Jun;39(6):1175-1186. (PMID: 31868251)
Theranostics. 2017 Aug 22;7(14):3573-3584. (PMID: 28912896)
Neurology. 2022 Jan 18;98(3):107-117. (PMID: 34810243)
Clin Interv Aging. 2023 May 30;18:855-867. (PMID: 37274869)
Sci Rep. 2019 Jan 23;9(1):321. (PMID: 30674905)
Int J Mol Sci. 2024 Feb 21;25(5):. (PMID: 38473776)
PLoS One. 2011;6(10):e26709. (PMID: 22053202)
Phys Med Biol. 2024 Jul 03;69(14):. (PMID: 38914104)
2S9ZZM9Q9V (Bevacizumab)
Weitere Informationen
Rationale: The efficacy of drug delivery to the brain is constrained by the impermeability of the blood-brain barrier (BBB) in healthy tissues and the heterogeneous permeability of the blood-tumor barrier (BTB) in gliomas. Focused ultrasound (FUS) has emerged as a promising technique to transiently modulate vascular permeability, however its effects vary across different brain tissues. This study systematically evaluates the effects of FUS-induced vascular permeability modulation in the gray matter (GM), white matter (WM), and brain tumors, considering their distinct tissue architectures, vascular densities, and permeability profile. Additionally, we compare the delivery of bevacizumab (antiangiogenic monoclonal antibody) and methotrexate (small-molecule chemotherapeutic) to determine how molecular size influences vascular-level permeability and extravasation distances. Methods: A total of n = 48 Fischer-344 rats, including both healthy and tumor-bearing cohorts, underwent magnetic resonance imaging (MRI)-guided FUS using a feedback-controlled algorithm to modulate microbubble pressure based on microbubble emissions. Tumors were either untreated or received a single FUS exposure, while healthy tissues, including GM and WM, were treated with either a single exposure, or a repeated exposure administered 30 minutes after the first one. MR images were used to assess contrast enhancement before and after sonication. Drug deposition was quantified via fluorescence microscopy in terms of local signal intensities and distances of extravasation. Tissue-specific vascular characteristics, including vessel diameters, densities, and inter-vessel distances, were also analysed. Results: The lack of MRI contrast enhancement in untreated tissues suggested a healthy permeability status of the BBB in GM and WM, while a compromised BTB was observed in tumors. Following FUS treatments, contrast enhancement significantly increased in all tissues, with tumors exhibiting the most pronounced effects. Repeated FUS further enhanced permeability in GM and WM, achieving drug deposition levels comparable to those observed in tumors after a single treatment. At the vascular level, FUS exposure led to significant increases in drug extravasation distances, particularly in tumors. Vascular densities were approximately threefold higher in GM, compared to WM and tumors (GM:WM:Tumor 3.2:1:1), yet both drug signal intensities and extravasation distance correlated more strongly with the number of treatments than with baseline vascularity. Fluorescence microscopy revealed that bevacizumab extravasation was primarily localized near vessel lumens, whereas methotrexate exhibited significantly greater extravascular diffusion, reaching distances spanning entire inter-vessel spaces, consistent with its lower molecular weight. At the individual vessel level, white matter showed significantly lower drug signal intensity than gray matter following a single treatment. Conclusion: This study provides vascular-level insights into how FUS-mediated drug delivery is influenced by tissue architecture, vascular properties, treatment regimen, and drug molecular weight. Notably, at the individual vessel level, drug extravasation varies between the different tissue types, and thus vascular density is not the sole driver of differences in drug deposition in these tissues. The study findings highlight the potential of repeated FUS exposures for enhancing the deposition of therapeutics across the physiologically intact BBB of both the gray and white matter, reaching levels comparable to those observed in the pathologically compromised BTB of gliomas. Thus, sonications prescribed over previously permeabilized tissues facilitate deeper drug penetration into interstitial compartments, allowing therapeutics to reach cells further from vessel lumens despite inherent tissue-specific differences.
(© The author(s).)
Competing Interests: M.O. is an inventor on multiple patents related to the use of FUS and has received related royalty income. She also holds industry-partnered research funding with FUS Instruments. M.O. further discloses a relative in a management position at Arrayus Technologies, a company developing clinical FUS device technology.