Treffer: UBA6 specificity for ubiquitin E2 conjugating enzymes reveals a priority mechanism of BIRC6.

Title:
UBA6 specificity for ubiquitin E2 conjugating enzymes reveals a priority mechanism of BIRC6.
Authors:
Riechmann C; Department of Biochemistry, University of Oxford, Oxford, UK., Ellison CJ; Department of Biochemistry, University of Oxford, Oxford, UK., Anderson JW; Department of Biochemistry, University of Oxford, Oxford, UK., Hofmann K; Institute for Genetics, University of Cologne, Cologne, Germany., Sarkies P; Department of Biochemistry, University of Oxford, Oxford, UK., Elliott PR; Department of Biochemistry, University of Oxford, Oxford, UK. paul.elliott@bioch.ox.ac.uk.
Source:
Nature structural & molecular biology [Nat Struct Mol Biol] 2025 Dec 05. Date of Electronic Publication: 2025 Dec 05.
Publication Model:
Ahead of Print
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101186374 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1545-9985 (Electronic) Linking ISSN: 15459985 NLM ISO Abbreviation: Nat Struct Mol Biol Subsets: MEDLINE
Imprint Name(s):
Original Publication: New York : Nature Pub. Group, c2004-
References:
Komander, D. & Rape, M. The ubiquitin code. Annu. Rev. Biochem. 81, 203–229 (2012). (PMID: 2252431610.1146/annurev-biochem-060310-170328)
Rape, M. Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19, 59–70 (2018). (PMID: 2892848810.1038/nrm.2017.83)
Swatek, K. N. & Komander, D. Ubiquitin modifications. Cell Res. 26, 399–422 (2016). (PMID: 27012465482213310.1038/cr.2016.39)
Pickart, C. M. Mechanisms underlying ubiquitination. Biochemistry 70, 503–533 (2001).
Hershko, A., Heller, H., Elias, S. & Ciechanover, A. Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206–8214 (1983). (PMID: 630597810.1016/S0021-9258(20)82050-X)
Ciechanover, A., Finley, D. & Varshavsky, A. Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57–66 (1984). (PMID: 632706010.1016/0092-8674(84)90300-3)
Finley, D., Ciechanover, A. & Varshavsky, A. Thermolability of ubiquitin-activating enzyme from the mammalian cell cycle mutant ts85. Cell 37, 43–55 (1984). (PMID: 632705910.1016/0092-8674(84)90299-X)
Jin, J., Li, X., Gygi, S. P. & Harper, J. W. Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging. Nature 447, 1135–1138 (2007). (PMID: 1759775910.1038/nature05902)
Chiu, Y.-H., Sun, Q. & Chen, Z. J. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 27, 1014–1023 (2007). (PMID: 1788967310.1016/j.molcel.2007.08.020)
Pelzer, C. et al. UBE1L2, a novel E1 enzyme specific for ubiquitin. J. Biol. Chem. 282, 23010–23014 (2007). (PMID: 1758031010.1074/jbc.C700111200)
Poulter, J. A. et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood 137, 3676–3681 (2021). (PMID: 33690815846240010.1182/blood.2020010286)
Collins, J. C. et al. Shared and distinct mechanisms of UBA1 inactivation across different diseases. EMBO J. 43, 1919–1946 (2024). (PMID: 383609931109912510.1038/s44318-024-00046-z)
Lee, P. C. W. et al. Altered social behavior and neuronal development in mice lacking the Uba6–Use1 ubiquitin transfer system. Mol. Cell 50, 172–184 (2013). (PMID: 23499007364066910.1016/j.molcel.2013.02.014)
Amer-Sarsour, F. et al. Disease-associated polyalanine expansion mutations impair UBA6-dependent ubiquitination. EMBO J. 43, 250–276 (2024). (PMID: 381775051089715810.1038/s44318-023-00018-9)
Andreev, V. P. et al. Label-free quantitative LC–MS proteomics of Alzheimer’s disease and normally aged human brains. J. Proteome Res. 11, 3053–3067 (2012). (PMID: 22559202344570110.1021/pr3001546)
Cervia, L. D. et al. A ubiquitination cascade regulating the integrated stress response and survival in carcinomas. Cancer Discov. 13, 766–795 (2022). (PMID: 997566710.1158/2159-8290.CD-22-1230)
Liu, X. et al. Orthogonal ubiquitin transfer identifies ubiquitination substrates under differential control by the two ubiquitin activating enzymes. Nat. Commun. 8, 14286 (2017). (PMID: 28134249529028010.1038/ncomms14286)
Jia, R. & Bonifacino, J. S. Negative regulation of autophagy by UBA6-BIRC6-mediated ubiquitination of LC3. Elife 8, e50034 (2019). (PMID: 31692446686362710.7554/eLife.50034)
Ebner, P. et al. The IAP family member BRUCE regulates autophagosome–lysosome fusion. Nat. Commun. 9, 599 (2018). (PMID: 29426817580755210.1038/s41467-018-02823-x)
Dietz, L. et al. Structural basis for SMAC-mediated antagonism of caspase inhibition by the giant ubiquitin ligase BIRC6. Science 379, 1112–1117 (2023). (PMID: 3675810610.1126/science.ade8840)
Hunkeler, M., Jin, C. Y. & Fischer, E. S. Structures of BIRC6–client complexes provide a mechanism of SMAC-mediated release of caspases. Science 379, 1105–1111 (2023). (PMID: 3675810410.1126/science.ade5750)
Ehrmann, J. F. et al. Structural basis for regulation of apoptosis and autophagy by the BIRC6/SMAC complex. Science 379, 1117–1123 (2023). (PMID: 3675810510.1126/science.ade8873)
Cappadocia, L. & Lima, C. D. Ubiquitin-like protein conjugation: structures, chemistry, and mechanism. Chem. Rev. 118, 889–918 (2018). (PMID: 2823444610.1021/acs.chemrev.6b00737)
Tokgöz, Z. et al. E1–E2 interactions in ubiquitin and Nedd8 ligation pathways. J. Biol. Chem. 287, 311–321 (2012). (PMID: 2206933310.1074/jbc.M111.294975)
Afsar, M. et al. Cryo-EM structures of Uba7 reveal the molecular basis for ISG15 activation and E1–E2 thioester transfer. Nat. Commun. 14, 4786 (2023). (PMID: 375533401040978510.1038/s41467-023-39780-z)
Wallace, I. et al. Insights into the ISG15 transfer cascade by the UBE1L activating enzyme. Nat. Commun. 14, 7970 (2023). (PMID: 380428591069356410.1038/s41467-023-43711-3)
Olsen, S. K. & Lima, C. D. Structure of a ubiquitin E1–E2 complex: insights to E1–E2 thioester transfer. Mol. Cell 49, 884–896 (2013). (PMID: 23416107362513810.1016/j.molcel.2013.01.013)
Walden, H., Podgorski, M. S. & Schulman, B. A. Insights into the ubiquitin transfer cascade from the structure of the activating enzyme for NEDD8. Nature 422, 330–334 (2003). (PMID: 1264692410.1038/nature01456)
Huang, D. T., Zhuang, M., Ayrault, O. & Schulman, B. A. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nat. Struct. Mol. Biol. 15, 280–287 (2008). (PMID: 1826411110.1038/nsmb.1387)
Durfee, L. A., Kelley, M. L. & Huibregtse, J. M. The basis for selective E1–E2 interactions in the ISG15 conjugation system. J. Biol. Chem. 283, 23895–23902 (2008). (PMID: 18583345252710710.1074/jbc.M804069200)
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017). (PMID: 28753430566767810.1016/j.cell.2017.06.010)
Chen, P.-T., Yeh, J.-Y., Weng, J.-H. & Wu, K.-P. Elucidating the mechanism underlying UBA7•UBE2L6 disulfide complex formation. Elife 14, RP105638 (2025).
Huang, D. T. et al. Basis for a ubiquitin-like protein thioester switch toggling E1–E2 affinity. Nature 445, 394–398 (2007). (PMID: 17220875282183110.1038/nature05490)
Williams, K. M. et al. Structural insights into E1 recognition and the ubiquitin-conjugating activity of the E2 enzyme Cdc34. Nat. Commun. 10, 3296 (2019). (PMID: 31341161665675710.1038/s41467-019-11061-8)
Yuan, L., Lv, Z., Adams, M. J. & Olsen, S. K. Crystal structures of an E1–E2–ubiquitin thioester mimetic reveal molecular mechanisms of transthioesterification. Nat. Commun. 12, 2370 (2021). (PMID: 33888705806248110.1038/s41467-021-22598-y)
Kochańczyk, T. et al. Structural basis for transthiolation intermediates in the ubiquitin pathway. Nature 633, 216–223 (2024). (PMID: 391432181137468810.1038/s41586-024-07828-9)
Winn, P. J., Religa, T. L., Battey, J. N. D., Banerjee, A. & Wade, R. C. Determinants of functionality in the ubiquitin conjugating enzyme family. Structure 12, 1563–1574 (2004). (PMID: 1534172210.1016/j.str.2004.06.017)
Huang, D. T. et al. Structural basis for recruitment of Ubc12 by an E2 binding domain in NEDD8’s E1. Mol. Cell 17, 341–350 (2005). (PMID: 1569433610.1016/j.molcel.2004.12.020)
Wang, J., et al. Crystal structure of UBA2 ufd –Ubc9: insights into E1–E2 interactions in Sumo pathways. PLoS ONE 5, e15805 (2010). (PMID: 21209884301269610.1371/journal.pone.0015805)
Schumacher, F.-R., Wilson, G. & Day, C. L. The N-terminal extension of UBE2E ubiquitin-conjugating enzymes limits chain assembly. J. Mol. Biol. 425, 4099–4111 (2013). (PMID: 2387189510.1016/j.jmb.2013.06.039)
Kolman, C. J., Toth, J. & Gonda, D. K. Identification of a portable determinant of cell cycle function within the carboxyl-terminal domain of the yeast CDC34 (UBC3) ubiquitin conjugating (E2) enzyme. EMBO J. 11, 3081–3090 (1992). (PMID: 163907555679210.1002/j.1460-2075.1992.tb05380.x)
Spratt, D. E. & Shaw, G. S. Association of the disordered C-terminus of CDC34 with a catalytically bound ubiquitin. J. Mol. Biol. 407, 425–438 (2011). (PMID: 2129608510.1016/j.jmb.2011.01.047)
Summers, M. K., Pan, B., Mukhyala, K. & Jackson, P. K. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol. Cell 31, 544–556 (2008). (PMID: 18722180281319010.1016/j.molcel.2008.07.014)
Brown, N. G. et al. Mechanism of polyubiquitination by human anaphase-promoting complex: RING repurposing for ubiquitin chain assembly. Mol. Cell 56, 246–260 (2014). (PMID: 25306923427286510.1016/j.molcel.2014.09.009)
Huang, D. T. et al. A unique E1–E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8. Nat. Struct. Mol. Biol. 11, 927–935 (2004). (PMID: 15361859286255610.1038/nsmb826)
Domingues, C. & Ryoo, H. D. Drosophila BRUCE inhibits apoptosis through non-lysine ubiquitination of the IAP-antagonist REAPER. Cell Death Differ. 19, 470–477 (2011). (PMID: 21886178323523110.1038/cdd.2011.116)
Vernooy, S. Y. et al. Drosophila BRUCE can potently suppress Rpr- and Grim-dependent but not Hid-dependent cell death. Curr. Biol. 12, 1164–1168 (2002). (PMID: 1212162710.1016/S0960-9822(02)00935-1)
Liu, S.-S. et al. Molecular mechanisms underlying the BIRC6-mediated regulation of apoptosis and autophagy. Nat. Commun. 15, 891 (2024). (PMID: 382910261082774810.1038/s41467-024-45222-1)
Mulder, M. P. C. et al. A cascading activity-based probe sequentially targets E1–E2–E3 ubiquitin enzymes. Nat. Chem. Biol. 12, 523–530 (2016). (PMID: 27182664510887210.1038/nchembio.2084)
Schulman, B. A. & Harper, J. W. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10, 319–331 (2009). (PMID: 19352404271259710.1038/nrm2673)
Wijk, S. J. L. van & Timmers, H. T. M. The family of ubiquitin-conjugating enzymes (E2s): deciding between life and death of proteins. FASEB J. 24, 981–993 (2010). (PMID: 1994026110.1096/fj.09-136259)
Bartke, T., Pohl, C., Pyrowolakis, G. & Jentsch, S. Dual Role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol. Cell 14, 801–811 (2004). (PMID: 1520095710.1016/j.molcel.2004.05.018)
Ren, J. et al. The Birc6 (BRUCE) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development. Proc. Natl Acad. Sci. USA 102, 565–570 (2005). (PMID: 1564035254348210.1073/pnas.0408744102)
Lotz, K., Pyrowolakis, G. & Jentsch, S. BRUCE, a giant E2/E3 ubiquitin ligase and inhibitor of apoptosis protein of the trans-Golgi network, is required for normal placenta development and mouse survival. Mol. Cell. Biol. 24, 9339–9350 (2004). (PMID: 1548590352224710.1128/MCB.24.21.9339-9350.2004)
Pohl, C. & Jentsch, S. Final stages of cytokinesis and midbody ring formation are controlled by BRUCE. Cell 132, 832–845 (2008). (PMID: 1832936910.1016/j.cell.2008.01.012)
Hao, Y. et al. Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat. Cell Biol. 6, 849–860 (2004). (PMID: 1530025510.1038/ncb1159)
Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. Global, quantitative and dynamic mapping of protein subcellular localization. Elife 5, e16950 (2016). (PMID: 27278775495988210.7554/eLife.16950)
Petroski, M. D. & Deshaies, R. J. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the Cullin-RING ubiquitin-ligase complex SCF–Cdc34. Cell 123, 1107–1120 (2005). (PMID: 1636003910.1016/j.cell.2005.09.033)
Liwocha, J. et al. Mechanism of millisecond Lys48-linked poly-ubiquitin chain formation by Cullin-RING ligases. Nat. Struct. Mol. Biol. 31, 378–389 (2024). (PMID: 383266501087320610.1038/s41594-023-01206-1)
Li, W., Tu, D., Brunger, A. T. & Ye, Y. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446, 333–337 (2007). (PMID: 1731014510.1038/nature05542)
Pickart, C. M., Kasperek, E. M., Beal, R. & Kim, A. Substrate properties of site-specific mutant ubiquitin protein (G76A) reveal unexpected mechanistic features of ubiquitin-activating enzyme (E1). J. Biol. Chem. 269, 7115–7123 (1994). (PMID: 812592010.1016/S0021-9258(17)37255-1)
Tokgöz, Z., Bohnsack, R. N. & Haas, A. L. Pleiotropic effects of ATP·Mg 2+ binding in the catalytic cycle of ubiquitin-activating enzyme. J. Biol. Chem. 281, 14729–14737 (2006). (PMID: 1659568110.1074/jbc.M513562200)
Olsen, S. K., Capili, A. D., Lu, X., Tan, D. S. & Lima, C. D. Active site remodelling accompanies thioester bond formation in the SUMO E1. Nature 463, 906–912 (2010). (PMID: 20164921286601610.1038/nature08765)
Hann, Z. S. et al. Structural basis for adenylation and thioester bond formation in the ubiquitin E1. Proc. Natl Acad. Sci. USA116, 15475–15484 (2019). (PMID: 31235585668170310.1073/pnas.1905488116)
Chrustowicz, J. et al. Multisite phosphorylation dictates selective E2–E3 pairing as revealed by Ubc8/UBE2H–GID/CTLH assemblies. Mol. Cell 84, 293–308 (2024). (PMID: 3811389210.1016/j.molcel.2023.11.027)
Kiss, L. et al. Trim-Away ubiquitinates and degrades lysine-less and N-terminally acetylated substrates. Nat. Commun. 14, 2160 (2023). (PMID: 370615291010571310.1038/s41467-023-37504-x)
Özkan, E., Yu, H. & Deisenhofer, J. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl Acad. Sci. USA 102, 18890–18895 (2005). (PMID: 16365295131688410.1073/pnas.0509418102)
Yariv, B., et al. Using evolutionary data to make sense of macromolecules with a ‘face-lifted’ ConSurf. Protein Sci. 32, e4582 (2023). (PMID: 36718848994259110.1002/pro.4582)
Michel, M. A., Komander, D. & Elliott, P. R. Enzymatic assembly of ubiquitin chains. Methods Mol. Biol. 1844, 73–84 (2018). (PMID: 3024270410.1007/978-1-4939-8706-1_6)
Perez, M. F. & Sarkies, P. Histone methyltransferase activity affects metabolism in human cells independently of transcriptional regulation. PLoS Biol. 21, e3002354 (2023). (PMID: 378833651060231810.1371/journal.pbio.3002354)
Bucher, P., Karplus, K., Moeri, N. & Hofmann, K. A flexible motif search technique based on generalized profiles. Comput. Chem. 20, 3–23 (1996). (PMID: 886783910.1016/S0097-8485(96)80003-9)
Frickey, T. & Lupas, A. CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004). (PMID: 1528409710.1093/bioinformatics/bth444)
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193)
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). (PMID: 26278980676066210.1016/j.jsb.2015.08.008)
Wagner, T., et al. SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Commun. Biol. 2, 218 (2019). (PMID: 31240256658450510.1038/s42003-019-0437-z)
Horstmann, A. et al. A service-based approach to cryoEM facility processing pipelines at eBIC. Acta Crystallogr. D Struct. Biol. 80, 174–180 (2024). (PMID: 383764531091054610.1107/S2059798324000986)
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 2816547310.1038/nmeth.4169)
Punjani, A., Zhang, H. & Fleet, D. J. Non-uniform refinement: adaptive regularization improves single-particle cryo-EM reconstruction. Nat. Methods 17, 1214–1221 (2020). (PMID: 3325783010.1038/s41592-020-00990-8)
Punjani, A. & Fleet, D. J. 3D variability analysis: resolving continuous flexibility and discrete heterogeneity from single particle cryo-EM. J. Struct. Biol. 213, 107702 (2021). (PMID: 3358228110.1016/j.jsb.2021.107702)
Caesar, J. et al. SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time. J. Struct. Biol. X 4, 100040 (2020). (PMID: 332948407695977)
Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and anisotropic magnification from cryo-EM data sets in RELION-3.1. IUCrJ 7, 253–267 (2020). (PMID: 32148853705537310.1107/S2052252520000081)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2)
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D Struct. Biol. 74, 519–530 (2018). (PMID: 29872003609648610.1107/S2059798318002425)
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019). (PMID: 31588918677885210.1107/S2059798319011471)
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010). (PMID: 20383002285231310.1107/S0907444910007493)
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). (PMID: 22930834555454210.1038/nmeth.2089)
Nomura, K. et al. Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity. Nat. Struct. Mol. Biol. 24, 578–587 (2017). (PMID: 28553961620563210.1038/nsmb.3414)
Kamadurai, H. B. et al. Insights into ubiquitin transfer cascades from a structure of a UbcH5B∼ubiquitin–HECTNEDD4L complex. Mol. Cell 36, 1095–1102 (2009). (PMID: 20064473285919510.1016/j.molcel.2009.11.010)
Middleton, A. J., Zhu, J. & Day, C. L. The RING domain of RING finger 12 efficiently builds degradative ubiquitin chains. J. Mol. Biol. 432, 3790–3801 (2020). (PMID: 3241609410.1016/j.jmb.2020.05.001)
Lechtenberg, B. C. et al. Structure of a HOIP/E2~ubiquitin complex reveals RBR E3 ligase mechanism and regulation. Nature 529, 546–550 (2016). (PMID: 26789245485647910.1038/nature16511)
Yuan, L., Lv, Z., Atkison, J. H. & Olsen, S. K. Structural insights into the mechanism and E2 specificity of the RBR E3 ubiquitin ligase HHARI. Nat. Commun. 8, 211 (2017). (PMID: 28790309554888710.1038/s41467-017-00272-6)
Zhang, W. et al. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol. Cell 62, 121–136 (2016). (PMID: 26949039498812510.1016/j.molcel.2016.02.005)
Entry Date(s):
Date Created: 20251205 Latest Revision: 20251205
Update Code:
20251206
DOI:
10.1038/s41594-025-01717-z
PMID:
41350950
Database:
MEDLINE

Weitere Informationen

In mammals, ubiquitylation is orchestrated by the canonical ubiquitin-activating E1 enzyme UBA1 and the orthogonal E1 UBA6. Growing evidence underscores the essentiality of both E1s, which differentiate between 29 active ubiquitin-conjugating enzymes (E2s). The mechanisms governing this distinction have remained unclear. Here we establish a framework for ubiquitin E1-E2 specificity. Focusing on UBA6-controlled ubiquitylation cascades, we reveal that BIRC6, a UBA6-exclusive E2, gains priority over all other UBA6-competent E2s, underpinning the functional importance of defined UBA6-BIRC6 ubiquitylation events in regulating cell death, embryogenesis and autophagy. By capturing BIRC6 receiving ubiquitin from UBA6 in different states, we observe BIRC6 engaging with the UBA6 ubiquitin fold domain, driving an exceptionally high-affinity interaction that is modulated by the UBA6 Cys-Cap loop. Using this interaction as a template, we demonstrate how to confer activity between E2s and their noncognate E1, providing a tool to delineate E1-E2-dependent pathways. Lastly, we explain how BIRC6 priority does not lead to inhibition of UBA6, through a bespoke thioester switch mechanism that disengages BIRC6 upon receiving ubiquitin. Our findings propose a concept of hierarchy of E2 activity with cognate E1s, which may explain how ubiquitin E1s can each function with over a dozen E2s and orchestrate E2-specific cellular functions.
(© 2025. The Author(s).)

Competing interests: The authors declare no competing interests.