Treffer: Ecology-informed symbolic machine learning: a methodological framework for classification of forest succession.
Original Publication: Dordrecht, Holland ; Boston : D. Reidel Pub. Co., c1981-
Belgiu, M., & Drăguţ, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. (PMID: 10.1016/j.isprsjprs.2016.01.011)
Berveglieri, A., Imai, N. N., Tommaselli, A. M., Casagrande, B., & Honkavaara, E. (2018). Successional stages and their evolution in tropical forests using multi-temporal photogrammetric surface models and superpixels. ISPRS Journal of Photogrammetry and Remote Sensing, 146, 548–558. (PMID: 10.1016/j.isprsjprs.2018.11.002)
Brazil. (1994). Conama resolution no. 4, Apr./1994. Official Diary of the Union.
Brazil. (2007). Conama resolution no. 388, Feb./2007. Official Diary of the Union.
Brazil. (2022). Law no. 18350, Jan./2022. Official Diary of the State of Santa Catarina.
Bressane, A., Garcia, A. J. D. S., Castro, M. V. D., Xerfan, S. D., Ruas, G., & Negri, R. G. (2024). Fuzzy machine learning applications in environmental engineering: Does the ability to deal with uncertainty really matter? Sustainability, 16(11), Article 4525. (PMID: 10.3390/su16114525)
Bressane, A., Gomes, I. G., Da Rosa, G. C. S., Brandelik, C. C. M., Silva, M. B., Siminski, A., & Negri, R. G. (2023a). Computer-aided classification of successional stage in subtropical Atlantic Forest: a proposal based on fuzzy artificial intelligence. Environmental Monitoring and Assessment, 195(1), 184.
Bressane, A., Pinto, J. P. D. C., da Silva, J. V., Silva, M. B., Siminski, A., Medeiros, L. C. D. C., & Negri, R. G. (2023b). Atlantic Forest ecosystems: Are there significant differences when compared at the same stage of regeneration? Sustainability, 15(8), 6823.
Bressane, A., Siminski, A., Gomes, I. G., Melo, C. P., Rosa, G. C. S., Galvão, A. L. S., Silva, M. B., Medeiros, L. C. C., & Negri, R. G. (2022). Prioritization of key indicators for the classification of successional stages in regenerating subtropical Atlantic forest, Southern Brazil: a proposal based on multivariate order statistics. Environment Systems and Decisions, 42, 01–10.
Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., ... & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145, 87–99.
Chazdon, R. L. (2019). Second growth: the promise of tropical forest regeneration in an age of deforestation. The University of Chicago Press.
Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K., Spergel, D., & Ho, S. (2020). Discovering symbolic models from deep learning with inductive biases. Advances in Neural Information Processing Systems,33, 17429–17442.
Cutler, D. R., Edwards, T. C., Jr., Beard, K. H., Cutler, A., Hess, K. T., Gibson, J., & Lawler, J. J. (2007). Random forests for classification in ecology. Ecology,88(11), 2783–2792. (PMID: 10.1890/07-0539.1)
da Costa, V. L., & de Freitas, M. W. D. (2024). Classificação de estágios sucessionais da Floresta Estacional Semidecídua utilizando dados Sentinel-1-2 e SRTM no Google Earth Engine. Ciência Florestal,34(2), e68716–e68716. (PMID: 10.5902/1980509868716)
Dale, M. B. (2000). Mt Glorious revisited: Secondary succession in subtropical rainforest. Community Ecology,1, 181–193. (PMID: 10.1556/ComEc.1.2000.2.8)
de Gasper, A. L., Uhlmann, A., Vibrans, A. C., & Sevegnani, L. (2015). Structural variation of seasonal deciduous forest in Santa Catarina state and its relationship with altitude and climate. Ciência Florestal,25(1), 77–89. (PMID: 10.5902/1980509817465)
Dias, T. D. C., Silveira, L. F., & Francisco, M. R. (2023). Spatiotemporal dynamics reveals forest rejuvenation, fragmentation, and edge effects in an Atlantic Forest hotspot, the Pernambuco Endemism Center, northeastern Brazil. PLoS ONE,18(9), Article e0291234. (PMID: 10.1371/journal.pone.0291234)
Du, M., Chen, Y., Nie, L., Lou, S., & Zhang, D. (2024). Physics-constrained robust learning of open-form partial differential equations from limited and noisy data. Physics of Fluids, 36(5). https://doi.org/10.1063/5.0204187.
Du, Q., Zhu, C., Ji, B., Xu, S., Xie, B., Wang, J., & Wang, Z. (2025). Quantification of the influencing factors of stand productivity of subtropical natural broadleaved forests in Eastern China using an explainable machine learning framework. Forests, 16(1), Article 95. (PMID: 10.3390/f16010095)
Duan, M., Bax, C., Laakso, K., Mashhadi, N., Mattie, N., & Sanchez-Azofeifa, A. (2023). Characterizing transitions between successional stages in a tropical dry forest using LiDAR techniques. Remote Sensing, 15(2), Article 479. (PMID: 10.3390/rs15020479)
Fengler, F. H., Bressane, A., Carvalho, M. M., Longo, R. M., de Medeiros, G. A., de Melo, W. J., ..., Ribeiro, A. I. (2017). Forest restoration assessment in Brazilian Amazonia: A new clustering-based methodology considering the reference ecosystem. Ecological Engineering, 108, 93–99.
Garcia Millan, V., & Sanchez-Azofeifa, A. (2018). Quantifying changes on forest succession in a dry tropical forest using angular-hyperspectral remote sensing. Remote Sensing, 10(12), Article 1865. (PMID: 10.3390/rs10121865)
Gorodkin, J. (2004). Comparing two K-category assignments by a K-category correlation coefficient. Computational Biology and Chemistry, 28(5–6), 367–374. (PMID: 10.1016/j.compbiolchem.2004.09.006)
Helmer, E. H., Ruzycki, T. S., Wilson, B. T., Sherrill, K. R., Lefsky, M. A., Marcano-Vega, H., ... & Ruefenacht, B. (2018). Tropical deforestation and recolonization by exotic and native trees: Spatial patterns of tropical forest biomass, functional groups, and species counts and links to stand age, geoclimate, and sustainability goals. Remote Sensing, 10(11), 1724.
Higuchi, P., Silva, A. C., Ferreira, T. S., Souza, S. T., Gomes, J. P., Silva, K. M., & Santos, K. F. (2012). Floristic composition and phytogeography of the tree component of Araucaria Forest fragments in southern Brazil. Brazilian Journal of Botany, 35(2), 145–157. (PMID: 10.1590/S1806-99592012000200004)
Li, W., Cao, S., Campos-Vargas, C., & Sanchez-Azofeifa, A. (2017). Identifying tropical dry forests extent and succession via the use of machine learning techniques. International Journal of Applied Earth Observation and Geoinformation, 63, 196–205. (PMID: 10.1016/j.jag.2017.08.003)
Lingner, D. V., Schorn, L. A., Sevegnani, L., & Vibrans, A. C. (2015). Dense ombrophilous forest in Santa Catarina - Brazil: Cluster analysis and ordination based on systematic. Ciência Florestal, 25(4), 933–946. (PMID: 10.5902/1980509820595)
Makke, N., & Chawla, S. (2024). Interpretable scientific discovery with symbolic regression: A review. Artificial Intelligence Review, 57(1), 2. (PMID: 10.1007/s10462-023-10622-0)
Molnar, C. (2020). Interpretable machine learning. A Guide for Making Black Box Models Explainable. https://christophm.github.io/interpretable-ml-book/ . Accessed 10 June 2025.
Montgomery, R. A., & Chazdon, R. L. (2001). Forest structure, canopy architecture, and light transmittance in tropical wet forests. Ecology, 82(10), 2707–2718. (PMID: 10.1890/0012-9658(2001)082[2707:FSCAAL]2.0.CO;2)
Mota, M. T., Bressane, A., Roveda, J. A. F., & Roveda, S. R. M. M. (2019). Successional stages classification in Atlantic forests: A methodological proposal based on fuzzy modeling. Revista Ciência Florestal, 22(2), 519–530. (PMID: 10.5902/1980509830688)
Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. (PMID: 10.1016/j.isprsjprs.2010.11.001)
Oliveira-Filho, A. T., Jarenkow, J., & Rodal, M. J. N. (2006). Floristic relationships of seasonally dry forests of eastern South America based on tree species distribution patterns. In Neotropical savannas and seasonally dry forests (pp. 159–192). CRC Press.
Pastório, F. F., Gasper, A. L., & Vibrans, A. C. (2020). Successional stages of Santa Catarina Atlantic subtropical evergreen rainforest: A classification method proposal. Cerne, 26(2), 162–171. (PMID: 10.1590/01047760202026022651)
Peichl, M., & Arain, M. A. (2007). Allometry and partitioning of above- and belowground tree biomass in an age-sequence of white pine forests. Forest Ecology and Management, 253(1–3), 68–80. (PMID: 10.1016/j.foreco.2007.07.003)
Pimentel, D. J. O., Feliciano, A. L. P., Marangon, L. C., Pessoa, M. M. D. L., Da Silva, M. I. O., Leite, A. P., & Silva, E. A. (2025). Can the dynamics of forest restoration reduce landscape fragmentation in the Atlantic Forest? iForest-Biogeosciences and Forestry, 18(2), 61. (PMID: 10.3832/ifor4639-018)
Prach, K., & Walker, L. R. (2011). Four opportunities for studies of ecological succession. Trends in Ecology & Evolution, 26(3), 119–123. (PMID: 10.1016/j.tree.2010.12.007)
Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686–707. (PMID: 10.1016/j.jcp.2018.10.045)
Resende, A. F., Gavioli, F. R., Chaves, R. B., Metzger, J. P., Pinto, L. F. G., Piffer, P. R., & Brancalion, P. H. (2024). How to enhance Atlantic Forest protection? Dealing with the shortcomings of successional stages classification. Perspectives in Ecology and Conservation, 22(2), 101–111.
Roderjan, C. V., Galvão, F., Kunioshi, Y. S., & Santos, E. P. (2001). Phytosociological characterization of a mixed ombrophylous forest remnant in Guarapuava. Biogeographica, 77(4), 129–140.
Román-Dañobeytia, F. J., Levy-Tacher, S. I., Macario-Mendoza, P., & Zúñiga-Morales, J. (2014). Redefining secondary forests in the Mexican forest code: Implications for management, restoration, and conservation. Forests, 5(5), 978–991. (PMID: 10.3390/f5050978)
Rosa, M. R., Brancalion, P. H., Crouzeilles, R., Tambosi, L. R., Piffer, P. R., Lenti, F. E., & Metzger, J. P. (2021). Hidden destruction of older forests threatens Brazil’s Atlantic Forest and challenges restoration programs. Science dvances, 7(4), eabc4547.
Shukla, P. R., Skeg, J., Buendia, E. C., Masson-Delmotte, V., Pörtner, H. O., Roberts, D. C., ... & Malley, J. (2019). Intergovernmental Panel on Climate Change. IPCC. (2019). Climate Change and Land: An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems.
Jain, P., Coogan, S. C., Subramanian, S. G., Crowley, M., Taylor, S., & Flannigan, M. D. (2020). A review of machine learning applications in wildfire science and management. Environmental Reviews, 28(4), 478–505. (PMID: 10.1139/er-2020-0019)
Silva, A. L., Longo, R. M., Bressane, A., & de Carvalho, M. F. H. (2019). Classification of urban forest fragments based on landscape metrics. Ciência Florestal, 29(3), 1254–1270. (PMID: 10.5902/1980509830201)
Silva, J. O., Galvao, F., Silva, A. C., & Higuchi, P. (2020). Floristic patterns of alluvial forests in Atlantic Forest and Pampa: Climate and geographic insertion as determining factors. Anais Da Academia Brasileira De Ciências, 92(3), e20180803. (PMID: 10.1590/0001-3765202020180803)
Siminski, A., Fantini, A. C., & Reis, M. S. (2013). Classification of secondary forests in regeneration stages of Atlantic forest, in Santa Catarina State, Brazil. Ciência Florestal, 23(3), 369–378. (PMID: 10.5902/1980509810548)
Siminski, A., Zambiasi, D. C., Santos, K. L., & Fantini, A. C. (2021). Dynamics of natural regeneration: Implications for landscape restoration in the Atlantic forest, Brazil. Frontiers in Forests and Global Change, 4, 1–15. (PMID: 10.3389/ffgc.2021.576908)
Sothe, C. (2019). Mapping successional forest stages and tree species in subtropical areas integrating UAV-based photogrammetric point cloud and hyperspectral data: Comparison of machine and deep learning algorithms.
Sothe, C., De Almeida, C. M., Schimalski, M. B., Liesenberg, V., La Rosa, L. E. C., Castro, J. D. B., & Feitosa, R. Q. (2020). A comparison of machine and deep-learning algorithms applied to multisource data for a subtropical forest area classification. International Journal of Remote Sensing, 41(5), 1943–1969. (PMID: 10.1080/01431161.2019.1681600)
Sotomayor, L. N., Cracknell, M. J., & Musk, R. (2023). Supervised machine learning for predicting and interpreting dynamic drivers of plantation forest productivity in northern Tasmania, Australia. Computers and Electronics in Agriculture, 209, 107804. (PMID: 10.1016/j.compag.2023.107804)
Stephens, T. (2016). gplearn: Genetic programming in scikit-learn. GitHub repository: https://github.com/trevorstephens/gplearn . Accessed 10 June 2025.
Sun, Z., Qian, W., Huang, Q., Lv, H., Yu, D., Ou, Q., ..., Tang, X. (2022). Use remote sensing and machine learning to study the changes of broad-leaved forest biomass and their climate driving forces in nature reserves of northern subtropics. Remote Sensing, 14(5), 1066.
van Breugel, M., Hall, J. S., Craven, D., Bailon, M., Hernandez, A., Abbene, M., & van Breugel, P. (2013). Succession of ephemeral secondary forests and their limited role for the conservation of floristic diversity in a human-modified tropical landscape. PLoS ONE, 8(12), e82433. (PMID: 10.1371/journal.pone.0082433)
Vibrans, A. C., Sevegnani, L., Lingner, D. V., Gasper, A. L., & Sabbagh, S. (2010). Forest floristic inventory of Santa Catarina State: Methodological and operational aspects. Pesquisa Florestal Brasileira, 30, 291–302. (PMID: 10.4336/2010.pfb.30.64.291)
Wu, Y., Sicard, B., & Gadsden, S. A. (2024). Physics-informed machine learning: A comprehensive review on applications in anomaly detection and condition monitoring. Expert Systems with Applications 124678. https://doi.org/10.1016/j.eswa.2024.124678.
Zhang, G., Li, X., Zhang, L., & Wei, X. (2024). Dynamics and causes of cropland non-agriculturalization in typical regions of China: An explanation based on interpretable machine learning. Ecological Indicators, 166, 112348. (PMID: 10.1016/j.ecolind.2024.112348)
Ziegelmaier Neto, B. H., Schimalski, M. B., Liesenberg, V., Sothe, C., Martins-Neto, R. P., & Floriani, M. M. P. (2024). Combining LIDAR and spaceborne multispectral data for mapping successional forest stages in subtropical forests. Remote Sensing, 16(9), Article 1523. (PMID: 10.3390/rs16091523)
Zou, Z., & Karniadakis, G. E. (2025). Multi-head physics-informed neural networks for learning functional priors and uncertainty quantification. Journal of Computational Physics, 531, 113947. (PMID: 10.1016/j.jcp.2025.113947)
Weitere Informationen
Accurately classifying forest successional stages remains a major challenge in applied ecology due to the continuum of succession, ecological heterogeneity, and limited interpretability of many machine learning (ML) approaches. Prevailing models typically rely on black-box algorithms that, while accurate, often lack ecological transparency, limiting their practical use in restoration and regulatory contexts. Here, we introduce and evaluate an ecology-informed symbolic machine learning (EISy-ML) framework that integrates symbolic regression with adaptive ecological constraints, specifically monotonic biomass trajectories and structural complexity proxies, derived from allometric functions. Using field data from 467 plots in the Subtropical Atlantic Forest, Brazil, EISy-ML generated interpretable and biologically plausible equations for successional classification. Performance was benchmarked against eight standard ML classifiers using balanced accuracy, macro F1, Cohen's kappa, and Matthews correlation coefficient. EISy-ML achieved the highest test accuracy (0.899), F1 (0.905), Kappa (0.829), and MCC (0.803), with no statistically significant difference compared to the next best models. The symbolic framework offers substantial improvements in transparency, reproducibility, and ecological coherence over conventional approaches, enabling direct application in restoration monitoring and environmental auditing. These results validate the hypothesis that symbolic ML integrated with ecological constraints produces models that are both robust and operationally interpretable. Future research should extend EISy-ML validation to other biomes, incorporate temporal and functional trait data, and explore uncertainty-aware or fuzzy logic extensions for handling transitional successional states.
(© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
Declarations. All authors have read, understood, and have complied, as applicable, with the statement on “Ethical responsibilities of Authors” as found in the Instructions for Authors. Ethics approval: Not applicable. Consent to participate: Not applicable. Consent for publication: Not applicable. Conflict of interest: The authors declare no competing interests. Clinical trial number: Not applicable.