Vom 20.12.2025 bis 11.01.2026 ist die Universitätsbibliothek geschlossen. Ab dem 12.01.2026 gelten wieder die regulären Öffnungszeiten. Ausnahme: Medizinische Hauptbibliothek und Zentralbibliothek sind bereits ab 05.01.2026 wieder geöffnet. Weitere Informationen

Treffer: Free-Breathing Multi-Slice Co-Registered Cardiac T1, T2, and ADC Mapping With Spin-Echo Echo Planar Imaging.

Title:
Free-Breathing Multi-Slice Co-Registered Cardiac T1, T2, and ADC Mapping With Spin-Echo Echo Planar Imaging.
Authors:
Mai D; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Biomedical Engineering, Case Western Reserve University & Cleveland Clinic, Cleveland, Ohio, USA., Kara D; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA., Liu Y; Cardiovascular MR R&D Collaborations, Siemens Medical Solutions USA, Inc., Cleveland, Ohio, USA., Moura TRS; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Sadighi M; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Kanj F; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Wexler E; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Sosnovik D; Cardiovascular Research Center, Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA., Hanna M; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Santangeli P; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Nakagawa H; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Wazni O; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Chen D; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA., Tang WHW; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Tandon A; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Biomedical Engineering, Case Western Reserve University & Cleveland Clinic, Cleveland, Ohio, USA.; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Kwon D; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA., Nguyen C; Cardiovascular Innovation Research Center, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Biomedical Engineering, Case Western Reserve University & Cleveland Clinic, Cleveland, Ohio, USA.; Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic, Cleveland, Ohio, USA.; Department of Cardiovascular Medicine, Heart Vascular Thoracic Institute, Cleveland Clinic, Cleveland, Ohio, USA.
Source:
Magnetic resonance in medicine [Magn Reson Med] 2025 Nov 15. Date of Electronic Publication: 2025 Nov 15.
Publication Model:
Ahead of Print
Publication Type:
Journal Article
Language:
English
Journal Info:
Publisher: Wiley Country of Publication: United States NLM ID: 8505245 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1522-2594 (Electronic) Linking ISSN: 07403194 NLM ISO Abbreviation: Magn Reson Med Subsets: MEDLINE
Imprint Name(s):
Publication: 1999- : New York, NY : Wiley
Original Publication: San Diego : Academic Press,
References:
D. R. Messroghli, J. C. Moon, V. M. Ferreira, et al., “Clinical Recommendations for Cardiovascular Magnetic Resonance Mapping of T1, T2, T2* and Extracellular Volume: A Consensus Statement by the Society for Cardiovascular Magnetic Resonance (SCMR) Endorsed by the European Association for Cardiovascular Imaging (EACVI),” Journal of Cardiovascular Magnetic Resonance 19, no. 1 (2017): 75, https://doi.org/10.1186/s12968‐017‐0389‐8.
Z. Khalique, P. F. Ferreira, A. D. Scott, S. Nielles‐Vallespin, D. N. Firmin, and D. J. Pennell, “Diffusion Tensor Cardiovascular Magnetic Resonance Imaging: A Clinical Perspective,” JACC. Cardiovascular Imaging 13, no. 5 (2020): 1235–1255, https://doi.org/10.1016/j.jcmg.2019.07.016.
P. K. Kim, Y. J. Hong, D. J. Im, et al., “Myocardial T1 and T2 Mapping: Techniques and Clinical Applications,” Korean Journal of Radiology 18, no. 1 (2017): 113–131, https://doi.org/10.3348/kjr.2017.18.1.113.
S. Paddock, V. Tsampasian, H. Assadi, et al., “Clinical Translation of Three‐Dimensional Scar, Diffusion Tensor Imaging, Four‐Dimensional Flow, and Quantitative Perfusion in Cardiac MRI: A Comprehensive Review,” Frontiers in Cardiovascular Medicine 8 (2021): 8, https://doi.org/10.3389/fcvm.2021.682027.
K. Moulin, M. Viallon, W. Romero, et al., “MRI of Reperfused Acute Myocardial Infarction Edema: ADC Quantification Versus T1 and T2 Mapping,” Radiology 295, no. 3 (2020): 542–549, https://doi.org/10.1148/radiol.2020192186.
B. Lampinen, F. Szczepankiewicz, J. Lätt, et al., “Probing Brain Tissue Microstructure With MRI: Principles, Challenges, and the Role of Multidimensional Diffusion‐Relaxation Encoding,” NeuroImage 282 (2023): 120338, https://doi.org/10.1016/j.neuroimage.2023.120338.
C. Velasco, C. Castillo‐Passi, N. Chaher, et al., “Simultaneous Liver T1, T2, and ADC MR Fingerprinting Using Optimized Motion‐Compensated Diffusion Preparations: An Initial Validation on Volunteers,” Magnetic Resonance in Medicine 94, no. 5 (2025): 2173–2189, https://doi.org/10.1002/mrm.30622.
D. R. Messroghli, A. Radjenovic, S. Kozerke, D. M. Higgins, M. U. Sivananthan, and J. P. Ridgway, “Modified Look‐Locker Inversion Recovery (MOLLI) for High‐Resolution T1 Mapping of the Heart,” Magnetic Resonance in Medicine 52, no. 1 (2004): 141–146, https://doi.org/10.1002/mrm.20110.
A. T. O'Brien, K. E. Gil, J. Varghese, O. P. Simonetti, and K. M. Zareba, “T2 Mapping in Myocardial Disease: A Comprehensive Review,” Journal of Cardiovascular Magnetic Resonance 24, no. 1 (2022): 33, https://doi.org/10.1186/s12968‐022‐00866‐0.
K. Chow, Y. Yang, P. Shaw, C. M. Kramer, and M. Salerno, “Robust Free‐Breathing SASHA T1 Mapping With High‐Contrast Image Registration,” Journal of Cardiovascular Magnetic Resonance 18, no. 1 (2016): 47, https://doi.org/10.1186/s12968‐016‐0267‐9.
R. R. Edelman, J. Gaa, V. J. Wedeen, et al., “In Vivo Measurement of Water Diffusion in the Human Heart,” Magnetic Resonance in Medicine 32, no. 3 (1994): 423–428, https://doi.org/10.1002/mrm.1910320320.
E. Dall'Armellina, D. B. Ennis, L. Axel, et al., “Cardiac Diffusion‐Weighted and Tensor Imaging: A Consensus Statement From the Special Interest Group of the Society for Cardiovascular Magnetic Resonance,” Journal of Cardiovascular Magnetic Resonance 27, no. 1 (2025): 101109, https://doi.org/10.1016/j.jocmr.2024.101109.
V. Gras, E. Farrher, F. Grinberg, and N. J. Shah, “Diffusion‐Weighted DESS Protocol Optimization for Simultaneous Mapping of the Mean Diffusivity, Proton Density and Relaxation Times at 3 Tesla,” Magnetic Resonance in Medicine 78, no. 1 (2017): 130–141, https://doi.org/10.1002/mrm.26353.
M. Afzali, L. Mueller, K. Sakaie, et al., “MR Fingerprinting With b‐Tensor Encoding for Simultaneous Quantification of Relaxation and Diffusion in a Single Scan,” Magnetic Resonance in Medicine 88, no. 5 (2022): 2043–2057, https://doi.org/10.1002/mrm.29352.
X. Cao, C. Liao, Z. Zhou, et al., “DTI‐MR Fingerprinting for Rapid High‐Resolution Whole‐Brain T1, T2, Proton Density, ADC, and Fractional Anisotropy Mapping,” Magnetic Resonance in Medicine 91, no. 3 (2024): 987–1001, https://doi.org/10.1002/mrm.29916.
H. Fan, L. Bunker, Z. Wang, et al., “Simultaneous Perfusion, Diffusion, T2*, and T1 Mapping With MR Fingerprinting,” Magnetic Resonance in Medicine 91, no. 2 (2024): 558–569, https://doi.org/10.1002/mrm.29880.
S. Ma, C. T. Nguyen, F. Han, et al., “Three‐Dimensional Simultaneous Brain T1, T2, and ADC Mapping With MR Multitasking,” Magnetic Resonance in Medicine 84, no. 1 (2020): 72–88, https://doi.org/10.1002/mrm.28092.
Y. Zhang, S. A. Wells, and D. Hernando, “Stimulated Echo Based Mapping (STEM) of T1, T2, and Apparent Diffusion Coefficient: Validation and Protocol Optimization,” Magnetic Resonance in Medicine 81, no. 1 (2019): 167–181, https://doi.org/10.1002/mrm.27358.
E. Aliotta, K. Moulin, Z. Zhang, and D. B. Ennis, “Simultaneous Measurement of T2 and Apparent Diffusion Coefficient (T2 +ADC) in the Heart With Motion‐Compensated Spin Echo Diffusion‐Weighted Imaging,” Magnetic Resonance in Medicine 79, no. 2 (2018): 654–662, https://doi.org/10.1002/mrm.26705.
C. T. Nguyen, A. G. Christodoulou, J. Coll‐Font, et al., “Free‐Breathing Diffusion Tensor MRI of the Whole Left Ventricle Using Second‐Order Motion Compensation and Multitasking Respiratory Motion Correction,” Magnetic Resonance in Medicine 85, no. 5 (2021): 2634–2648, https://doi.org/10.1002/mrm.28611.
H. Xue, A. Greiser, S. Zuehlsdorff, et al., “Phase‐Sensitive Inversion Recovery for Myocardial T1 Mapping With Motion Correction and Parametric Fitting,” Magnetic Resonance in Medicine 69, no. 5 (2013): 1408–1420, https://doi.org/10.1002/mrm.24385.
N. Jin, J. S. Da Silveira, M. P. Jolly, et al., “Free‐Breathing Myocardial T2 Mapping Using GRE‐EPI and Automatic Non‐Rigid Motion Correction,” Journal of Cardiovascular Magnetic Resonance 17, no. 1 (2015): 113, https://doi.org/10.1186/s12968‐015‐0216‐z.
S. Weingärtner, S. Roujol, M. Akçakaya, T. A. Basha, and R. Nezafat, “Free‐Breathing Multislice Native Myocardial T1 Mapping Using the Slice‐Interleaved T1 (STONE) Sequence,” Magnetic Resonance in Medicine 74, no. 1 (2015): 115–124, https://doi.org/10.1002/mrm.25387.
D. Mai, D. Kara, Y. Liu, D. Kwon, and C. Nguyen, “Initial Feasibility of Free‐Breathing Multiparametric Mapping With Echo Planar Imaging to Derive T1, T2 and ADC Maps,” Journal of Cardiovascular Magnetic Resonance 26 (2024): 100162, https://doi.org/10.1016/j.jocmr.2024.100162.
ISMRM, “Initial Feasibility of Free‐breathing Multiparametric Mapping with Echo Planar Imaging to Derive T1, T2 and ADC Maps,” 2024, https://archive.ismrm.org/2024/0565.html.
P. Kellman and M. S. Hansen, “T1‐Mapping in the Heart: Accuracy and Precision,” Journal of Cardiovascular Magnetic Resonance 16, no. 1 (2014): 2, https://doi.org/10.1186/1532‐429X‐16‐2.
C. T. Stoeck, C. von Deuster, M. Genet, D. Atkinson, and S. Kozerke, “Second‐Order Motion‐Compensated Spin Echo Diffusion Tensor Imaging of the Human Heart,” Magnetic Resonance in Medicine 75, no. 4 (2016): 1669–1676, https://doi.org/10.1002/mrm.25784.
G. Hermosillo, C. Chefd'Hotel, and O. Faugeras, “Variational Methods for Multimodal Image Matching,” International Journal of Computer Vision 50, no. 3 (2002): 329–343, https://doi.org/10.1023/A:1020830525823.
C. Guetter, H. Xue, C. Chefd'hotel, and J. Guehring, “Efficient Symmetric and Inverse‐Consistent Deformable Registration Through Interleaved Optimization,” in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2011), 590–593, https://doi.org/10.1109/ISBI.2011.5872476.
P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python,” Nature Methods 17, no. 3 (2020): 261–272, https://doi.org/10.1038/s41592‐019‐0686‐2.
G. Captur, P. Gatehouse, K. E. Keenan, et al., “A Medical Device‐Grade T1 and ECV Phantom for Global T1 Mapping Quality Assurance—The T1 Mapping and ECV Standardization in Cardiovascular Magnetic Resonance (T1MES) Program,” Journal of Cardiovascular Magnetic Resonance 18, no. 1 (2016): 58, https://doi.org/10.1186/s12968‐016‐0280‐z.
G. Captur, A. Bhandari, R. Brühl, et al., “T1 Mapping Performance and Measurement Repeatability: Results From the Multi‐National T1 Mapping Standardization Phantom Program (T1MES),” Journal of Cardiovascular Magnetic Resonance 22, no. 1 (2020): 31, https://doi.org/10.1186/s12968‐020‐00613‐3.
I. Lavdas, K. C. Behan, A. Papadaki, D. W. McRobbie, and E. O. Aboagye, “A Phantom for Diffusion‐Weighted MRI (DW‐MRI),” Journal of Magnetic Resonance Imaging 38, no. 1 (2013): 173–179, https://doi.org/10.1002/jmri.23950.
D. Kara, Y. Liu, S. Chen, et al., “In Vivo Cardiac Diffusion Tensor Imaging on an MR System Featuring Ultrahigh Performance Gradients With 200 mT/m Maximum Gradient Strength,” Magnetic Resonance in Medicine 93, no. 2 (2025): 673–688, https://doi.org/10.1002/mrm.30308.
V. M. Ferreira, R. S. Wijesurendra, A. Liu, et al., “Systolic ShMOLLI Myocardial T1‐Mapping for Improved Robustness to Partial‐Volume Effects and Applications in Tachyarrhythmias,” Journal of Cardiovascular Magnetic Resonance 17, no. 1 (2015): 77, https://doi.org/10.1186/s12968‐015‐0182‐5.
C. Tessa, S. Diciotti, N. Landini, et al., “Myocardial T1 and T2 Mapping in Diastolic and Systolic Phase,” International Journal of Cardiovascular Imaging 31, no. 5 (2015): 1001–1010, https://doi.org/10.1007/s10554‐015‐0639‐5.
L. Zhao, S. Li, X. Ma, et al., “Systolic MOLLI T1 Mapping With Heart‐Rate‐Dependent Pulse Sequence Sampling Scheme Is Feasible in Patients With Atrial Fibrillation,” Journal of Cardiovascular Magnetic Resonance 18 (2016): 13, https://doi.org/10.1186/s12968‐016‐0232‐7.
Y. Liu, D. Kara, K. Chow, et al., “Inline Automated Post‐Processing and On‐Scanner Diffusion Tensor Maps Visualization for Cardiac Diffusion Tensor Imaging Using FIRE,” Journal of Cardiovascular Magnetic Resonance 27 (2025): 101384, https://doi.org/10.1016/j.jocmr.2024.101384.
Y. Liu, D. Kara, T. Garrett, et al., “Toward Optimal Inline Respiratory Motion Correction for in Vivo Cardiac Diffusion Tensor MRI Using Symmetric and Inverse‐Consistent Deformable Image Registration,” Magnetic Resonance in Medicine 94 (2025): 724–734, https://doi.org/10.1002/mrm.30485.
K. Chow, P. Kellman, and H. Xue, “Prototyping Image Reconstruction and Analysis With FIRE,” in Proceedings SCMR 24th Annual Scientific Sessions (2021) Virtual Meeting.
M. D. Cerqueira, N. J. Weissman, V. Dilsizian, et al., “Standardized Myocardial Segmentation and Nomenclature for Tomographic Imaging of the Heart. A Statement for Healthcare Professionals From the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association,” Circulation 105, no. 4 (2002): 539–542, https://doi.org/10.1161/hc0402.102975.
B. S. N. Selvadurai, V. O. Puntmann, D. A. Bluemke, et al., “Definition of Left Ventricular Segments for Cardiac Magnetic Resonance Imaging,” JACC: Cardiovascular Imaging 11, no. 6 (2018): 926–928, https://doi.org/10.1016/j.jcmg.2017.09.010.
A. Bustin, A. Hua, G. Milotta, et al., “High‐Spatial‐Resolution 3D Whole‐Heart MRI T2 Mapping for Assessment of Myocarditis,” Radiology 298, no. 3 (2021): 578–586, https://doi.org/10.1148/radiol.2021201630.
A. Hua, C. Velasco, C. Munoz, et al., “Evaluation of Myocarditis With a Free‐Breathing Three‐Dimensional Isotropic Whole‐Heart Joint T1 and T2 Mapping Sequence,” Journal of Cardiovascular Magnetic Resonance 26, no. 2 (2024): 101100, https://doi.org/10.1016/j.jocmr.2024.101100.
R. Brown, Y. C. Cheng, M. Haacke, et al., Magnetic Resonance Imaging: Physical Principles and Sequence Design: Second Edition (Wiley‐Blackwell, 2014), https://doi.org/10.1002/9781118633953.
M. Salerno and C. M. Kramer, “Advances in Parametric Mapping With CMR Imaging,” JACC: Cardiovascular Imaging 6, no. 7 (2013): 806–822, https://doi.org/10.1016/j.jcmg.2013.05.005.
C. von Deuster, C. T. Stoeck, M. Genet, D. Atkinson, and S. Kozerke, “Spin Echo Versus Stimulated Echo Diffusion Tensor Imaging of the In Vivo Human Heart,” Magnetic Resonance in Medicine 76, no. 3 (2016): 862–872, https://doi.org/10.1002/mrm.25998.
C. T. Stoeck, A. D. Scott, P. F. Ferreira, et al., “Motion‐Induced Signal Loss in In Vivo Cardiac Diffusion‐Weighted Imaging,” Journal of Magnetic Resonance Imaging 51, no. 1 (2020): 319–320, https://doi.org/10.1002/jmri.26767.
W. Warnica, A. Al‐Arnawoot, A. Stanimirovic, et al., “Clinical Impact of Cardiac MRI T1 and T2 Parametric Mapping in Patients With Suspected Cardiomyopathy,” Radiology 305, no. 2 (2022): 319–326, https://doi.org/10.1148/radiol.220067.
A. Gotschy, C. Von Deuster, R. J. H. Van Gorkum, et al., “Characterizing Cardiac Involvement in Amyloidosis Using Cardiovascular Magnetic Resonance Diffusion Tensor Imaging,” Journal of Cardiovascular Magnetic Resonance 21, no. 1 (2019): 56, https://doi.org/10.1186/s12968‐019‐0563‐2.
C. Nguyen, Z. Fan, B. Sharif, et al., “In Vivo Three‐Dimensional High Resolution Cardiac Diffusion‐Weighted MRI: A Motion Compensated Diffusion‐Prepared Balanced Steady‐State Free Precession Approach,” Magnetic Resonance in Medicine 72, no. 5 (2014): 1257–1267, https://doi.org/10.1002/mrm.25038.
I. Perez‐Terol, C. Rios‐Navarro, E. de Dios, et al., “Magnetic Resonance Microscopy and Correlative Histopathology of the Infarcted Heart,” Scientific Reports 9, no. 1 (2019): 20017, https://doi.org/10.1038/s41598‐019‐56436‐5.
D. Bugg, R. Bretherton, P. Kim, et al., “Infarct Collagen Topography Regulates Fibroblast Fate via p38‐Yes‐Associated Protein Transcriptional Enhanced Associate Domain Signals,” Circulation Research 127, no. 10 (2020): 1306–1322, https://doi.org/10.1161/CIRCRESAHA.119.316162.
C. Mekkaoui, S. Huang, H. H. Chen, et al., “Fiber Architecture in Remodeled Myocardium Revealed With a Quantitative Diffusion CMR Tractography Framework and Histological Validation,” Journal of Cardiovascular Magnetic Resonance 14, no. 1 (2012): 71, https://doi.org/10.1186/1532‐429X‐14‐70.
A. D. Scott, S. Nielles‐Vallespin, P. F. Ferreira, et al., “An In‐Vivo Comparison of Stimulated‐Echo and Motion Compensated Spin‐Echo Sequences for 3 T Diffusion Tensor Cardiovascular Magnetic Resonance at Multiple Cardiac Phases,” Journal of Cardiovascular Magnetic Resonance 20, no. 1 (2018): 1, https://doi.org/10.1186/s12968‐017‐0425‐8.
P. J. Slator, M. Palombo, K. L. Miller, et al., “Combined Diffusion‐Relaxometry Microstructure Imaging: Current Status and Future Prospects,” Magnetic Resonance in Medicine 86, no. 6 (2021): 2987–3011, https://doi.org/10.1002/mrm.28963.
Á. Planchuelo‐Gómez, M. Descoteaux, H. Larochelle, J. Hutter, D. K. Jones, and C. M. W. Tax, “Optimisation of Quantitative Brain Diffusion‐Relaxation MRI Acquisition Protocols With Physics‐Informed Machine Learning,” Medical Image Analysis 94 (2024): 103134, https://doi.org/10.1016/j.media.2024.103134.
H. Xue, S. Shah, A. Greiser, et al., “Motion Correction for Myocardial T1 Mapping Using Image Registration With Synthetic Image Estimation,” Magnetic Resonance in Medicine 67, no. 6 (2012): 1644–1655, https://doi.org/10.1002/mrm.23153.
P. Kellman, A. C. Larson, L. Y. Hsu, et al., “Motion‐Corrected Free‐Breathing Delayed Enhancement Imaging of Myocardial Infarction,” Magnetic Resonance in Medicine 53, no. 1 (2005): 194–200, https://doi.org/10.1002/mrm.20333.
M. A. Bush, Y. Pan, N. Jin, et al., “Prospective Correction of Patient‐Specific Respiratory Motion in Myocardial T1 and T2 Mapping,” Magnetic Resonance in Medicine 85, no. 2 (2021): 855–867, https://doi.org/10.1002/mrm.28475.
T. A. Basha, S. Bellm, S. Roujol, S. Kato, and R. Nezafat, “Free‐Breathing Slice‐Interleaved Myocardial T2 Mapping With Slice‐Selective T2 Magnetization Preparation,” Magnetic Resonance in Medicine 76, no. 2 (2016): 555–565, https://doi.org/10.1002/mrm.25907.
K. Moulin, P. Croisille, T. Feiweier, et al., “In Vivo Free‐Breathing DTI and IVIM of the Whole Human Heart Using a Real‐Time Slice‐Followed SE‐EPI Navigator‐Based Sequence: A Reproducibility Study in Healthy Volunteers,” Magnetic Resonance in Medicine 76, no. 1 (2016): 70–82, https://doi.org/10.1002/mrm.25852.
M. Afzali, S. Coveney, L. Mueller, et al., “Cardiac Diffusion Kurtosis Imaging in the Human Heart In Vivo Using 300 mT/m Gradients,” Magnetic Resonance in Medicine 94 (2025): 2100–2112, https://doi.org/10.1002/mrm.30626.
P. F. Ferreira, P. D. Gatehouse, R. H. Mohiaddin, and D. N. Firmin, “Cardiovascular magnetic resonance artefacts,” Journal of Cardiovascular Magnetic Resonance 15, no. 1 (2013): 41, https://doi.org/10.1186/1532‐429X‐15‐41.
S. Roujol, S. Weingärtner, M. Foppa, et al., “Accuracy, Precision, and Reproducibility of Four T1 Mapping Sequences: A Head‐To‐Head Comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE,” Radiology 272, no. 3 (2014): 683–689, https://doi.org/10.1148/radiol.14140296.
S. Chen, D. Kara, J. Coll‐Font, et al., “Characterization of Normal Myocardial Microstructure for Healthy Women and Men Cohorts Using cDTI With Ultra‐High‐Performance Gradient MRI Scanner,” Journal of Cardiovascular Magnetic Resonance (October 2025): 101966, https://doi.org/10.1016/j.jocmr.2025.101966.
A. D. Scott, K. Wen, Y. Luo, et al., “The Effects of Field Strength on Stimulated Echo and Motion‐Compensated Spin‐Echo Diffusion Tensor Cardiovascular Magnetic Resonance Sequences,” Journal of Cardiovascular Magnetic Resonance 26, no. 2 (2024): 101052, https://doi.org/10.1016/j.jocmr.2024.101052.
C. Liao, Y. Chen, X. Cao, et al., “Efficient Parallel Reconstruction for High Resolution Multishot Spiral Diffusion Data With Low Rank Constraint,” Magnetic Resonance in Medicine 77, no. 3 (2017): 1359–1366, https://doi.org/10.1002/mrm.26199.
M. Sadighi, D. Kara, D. Mai, et al., “Cardiac DTI Using Short‐Axis PROPELLER: A Feasibility Study,” Magnetic Resonance in Medicine 91 (2024): 2546–2558, https://doi.org/10.1002/mrm.30020.
X. Cao, K. Wang, C. Liao, et al., “Efficient T2 Mapping With Blip‐Up/Down EPI and gSlider‐SMS (T2‐BUDA‐gSlider),” Magnetic Resonance in Medicine 86, no. 4 (2021): 2064–2075, https://doi.org/10.1002/mrm.28872.
J. Coll‐Font, S. Chen, R. Eder, et al., “Manifold‐Based Respiratory Phase Estimation Enables Motion and Distortion Correction of Free‐Breathing Cardiac Diffusion Tensor MRI,” Magnetic Resonance in Medicine 87, no. 1 (2022): 474–487, https://doi.org/10.1002/mrm.28972.
K. Phipps, M. van de Boomen, R. Eder, et al., “Accelerated in Vivo Cardiac Diffusion‐Tensor MRI Using Residual Deep Learning–Based Denoising in Participants With Obesity,” Radiology: Cardiothoracic Imaging 3, no. 3 (2021): e200580, https://doi.org/10.1148/ryct.2021200580.
Grant Information:
R01 EB033853 United States NH NIH HHS; R01 HL151704 United States NH NIH HHS; R01 HL159010 United States NH NIH HHS; R01HL180504 United States NH NIH HHS
Contributed Indexing:
Keywords: cardiac MRI; diffusion; free‐breathing; myocardium; relaxation; tissue characterization
Entry Date(s):
Date Created: 20251115 Latest Revision: 20251115
Update Code:
20251116
DOI:
10.1002/mrm.70181
PMID:
41240353
Database:
MEDLINE

Weitere Informationen

Purpose: To develop a free-breathing method for multi-slice co-registered cardiac T1, T2, and ADC maps using single-shot spin-echo echo planar imaging (SE-EPI).
Methods: T1, T2, and diffusion weighted images in five slices were acquired with SE-EPI readouts during free breathing using interleaved acquisition of slices, non-selective inversion recovery, varying echo times (TE), and second-order motion-compensated diffusion gradients in three orthogonal directions with different b values. All images were registered to a single target image followed by parameter fitting to generate co-registered T1/T2/ADC maps. This approach was evaluated in phantom measurements, 13 healthy volunteers, two myocardial infarction (MI) swine, and two cardiac amyloidosis (CA) patients by comparison to reference mapping techniques. Qualitative assessments were performed by two expert readers.
Results: Phantom experiments showed strong agreement with reference measurements (R <sup>2</sup>  > 0.96). In volunteers, myocardial T1 values were higher than MOLLI (1341 ± 59 vs. 1252 ± 36 ms, p = 0.003); the proposed T2 values were shorter than T2prep-FLASH (38.7 ± 2.2 vs. 41.0 ± 2.2 ms; p = 0.009), and mean ADC values were comparable to the reference cDTI-derived mean diffusivity (MD) values (1.57 ± 0.05 vs. 1.56 ± 0.05 μm <sup>2</sup> /ms; p = 0.404). Proposed relaxation maps received significantly lower quality scores than references, and diffusivity maps were comparable. Myocardial abnormalities in CA patients and MI swine were consistent with conventional methods.
Conclusions: The proposed method enables five-slice, co-registered, and free-breathing myocardial T1, T2, and ADC maps in less than 5 min, facilitating integrated multi-contrast tissue characterization in cardiac MRI. Future work will aim to optimize map quality and expand clinical applications.
(© 2025 The Author(s). Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.)