Treffer: Alteration of Essential Cell Function by Ultrasound-Targeted Microbubble Cavitation.

Title:
Alteration of Essential Cell Function by Ultrasound-Targeted Microbubble Cavitation.
Authors:
Paranjape AN; Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA., Chen X; Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA., Villanueva FS; Center for Ultrasound Molecular Imaging and Therapeutics, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA. villanuevafs@upmc.edu.
Source:
Current cardiology reports [Curr Cardiol Rep] 2025 Nov 14; Vol. 27 (1), pp. 155. Date of Electronic Publication: 2025 Nov 14.
Publication Type:
Journal Article; Review
Language:
English
Journal Info:
Publisher: Current Science Country of Publication: United States NLM ID: 100888969 Publication Model: Electronic Cited Medium: Internet ISSN: 1534-3170 (Electronic) Linking ISSN: 15233782 NLM ISO Abbreviation: Curr Cardiol Rep Subsets: MEDLINE
Imprint Name(s):
Original Publication: Philadelphia, PA : Current Science, c1999-
References:
Hillis GS, Bloomfield P. Basic transthoracic echocardiography. BMJ. 2005;330(7505):1432–6. https://doi.org/10.1136/bmj.330.7505.1432 . (PMID: 10.1136/bmj.330.7505.143215961816558382)
Mulvagh SL, Rakowski H, Vannan MA, Abdelmoneim SS, Becher H, Bierig SM, et al. American society of echocardiography consensus statement on the clinical applications of ultrasonic contrast agents in echocardiography. J Am Soc Echocardiogr. 2008;21(11):1179–201. https://doi.org/10.1016/j.echo.2008.09.009 . (quiz 281). (PMID: 10.1016/j.echo.2008.09.00918992671)
Thomas B. Ottoboni RES, Ronald K. Yamamoto. Microparticles useful as ultrasonic contrast agents. France. 1998.
Schlief R. Galactose based echo-enhancing agents. Ultrasound contrast agents. 1996.
Lee H, Kim H, Han H, Lee M, Lee S, Yoo H, et al. Microbubbles used for contrast enhanced ultrasound and theragnosis: a review of principles to applications. Biomed Eng Lett. 2017;7(2):59–69. https://doi.org/10.1007/s13534-017-0016-5 . (PMID: 10.1007/s13534-017-0016-5306031526208473)
Helfield B, Chen X, Watkins SC, Villanueva FS. Biophysical insight into mechanisms of sonoporation. Proc Natl Acad Sci U S A. 2016;113(36):9983–8. https://doi.org/10.1073/pnas.1606915113 . (PMID: 10.1073/pnas.1606915113275510815018802)
Helfield BL, Chen X, Qin B, Watkins SC, Villanueva FS. Mechanistic insight into sonoporation with ultrasound-stimulated polymer microbubbles. Ultrasound Med Biol. 2017;43(11):2678–89. https://doi.org/10.1016/j.ultrasmedbio.2017.07.017 . (PMID: 10.1016/j.ultrasmedbio.2017.07.017288475005644032)
Albulushi A, Xie F, Porter TR. Ultrasound enhancing agents in cardiovascular imaging: expanding horizons beyond coronary arteries. Cardiovasc Ultrasound. 2024;22(1):10. https://doi.org/10.1186/s12947-024-00330-2 . (PMID: 10.1186/s12947-024-00330-23911807311312391)
de Jong N, Emmer M, van Wamel A, Versluis M. Ultrasonic characterization of ultrasound contrast agents. Med Biol Eng Comput. 2009;47(8):861–73. https://doi.org/10.1007/s11517-009-0497-1 . (PMID: 10.1007/s11517-009-0497-1194687702727586)
Pacella JJ, Brands J, Schnatz FG, Black JJ, Chen X, Villanueva FS. Treatment of microvascular micro-embolization using microbubbles and long-tone-burst ultrasound: an in vivo study. Ultrasound Med Biol. 2015;41(2):456–64. https://doi.org/10.1016/j.ultrasmedbio.2014.09.033 . (PMID: 10.1016/j.ultrasmedbio.2014.09.03325542487)
Chen X, Leeman JE, Wang J, Pacella JJ, Villanueva FS. New insights into mechanisms of sonothrombolysis using ultra-high-speed imaging. Ultrasound Med Biol. 2014;40(1):258–62. https://doi.org/10.1016/j.ultrasmedbio.2013.08.021 . (PMID: 10.1016/j.ultrasmedbio.2013.08.02124139920)
Sitta J, Howard CM. Applications of ultrasound-mediated drug delivery and gene therapy. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms222111491 . (PMID: 10.3390/ijms222111491347689228583720)
Quarato CMI, Lacedonia D, Salvemini M, Tuccari G, Mastrodonato G, Villani R, et al. A review on biological effects of ultrasounds: key messages for clinicians. Diagnostics. 2023. https://doi.org/10.3390/diagnostics13050855 . (PMID: 10.3390/diagnostics130508553689999810001275)
American Institute of Ultrasound in Medicine. Section 4--bioeffects in tissues with gas bodies. J Ultrasound Med. 2000;19(2):97–108, 54–68. https://doi.org/10.7863/jum.2000.19.2.97 .
Church CC. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med Biol. 2002;28(10):1349–64. https://doi.org/10.1016/s0301-5629(02)00579-3 . (PMID: 10.1016/s0301-5629(02)00579-312467862)
Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76(1):26–34. https://doi.org/10.2106/00004623-199401000-00004 . (PMID: 10.2106/00004623-199401000-000048288661)
Monma Y, Shindo T, Eguchi K, Kurosawa R, Kagaya Y, Ikumi Y, et al. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction. Cardiovasc Res. 2021;117(5):1325–38. https://doi.org/10.1093/cvr/cvaa221 . (PMID: 10.1093/cvr/cvaa22132683442)
Zhang G, Li X, Wu L, Qin YX. Piezo1 channel activation in response to mechanobiological acoustic radiation force in osteoblastic cells. Bone Res. 2021;9(1):16. https://doi.org/10.1038/s41413-020-00124-y . (PMID: 10.1038/s41413-020-00124-y336923427946898)
Hu R, Yang ZY, Li YH, Zhou Z. Lipus promotes endothelial differentiation and angiogenesis of periodontal ligament stem cells by activating Piezo1. Int J Stem Cells. 2022;15(4):372–83. https://doi.org/10.15283/ijsc22024 . (PMID: 10.15283/ijsc22024357690579705156)
Iacoponi F, Cafarelli A, Fontana F, Pratellesi T, Dumont E, Barravecchia I, et al. Optimal low-intensity pulsed ultrasound stimulation for promoting anti-inflammatory effects in macrophages. APL Bioeng. 2023;7(1):016114. https://doi.org/10.1063/5.0137881 . (PMID: 10.1063/5.01378813696845310036142)
Ambattu LA, Del Rosal B, Conn CE, Yeo LY. High-frequency MHz-order vibration enables cell membrane remodeling and lipid microdomain manipulation. Biophys J. 2025;124(1):25–39. https://doi.org/10.1016/j.bpj.2024.10.007 . (PMID: 10.1016/j.bpj.2024.10.00739415451)
Ambattu LA, Knight C, Lin KH, Gelmi A, Yeo LY. Calcium-dependent cAMP mediates the mechanoresponsive behaviour of endothelial cells to high-frequency nanomechanostimulation. Biomaterials. 2023;292:121866. https://doi.org/10.1016/j.biomaterials.2022.121866 . (PMID: 10.1016/j.biomaterials.2022.12186636526351)
Yoo S, Mittelstein DR, Hurt RC, Lacroix J, Shapiro MG. Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nat Commun. 2022;13(1):493. https://doi.org/10.1038/s41467-022-28040-1 . (PMID: 10.1038/s41467-022-28040-1350789798789820)
Blackmore DG, Razansky D, Gotz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron. 2023;111(8):1174–90. https://doi.org/10.1016/j.neuron.2023.02.018 . (PMID: 10.1016/j.neuron.2023.02.01836917978)
Deng Z, Wang J, Xiao Y, Li F, Niu L, Liu X, et al. Ultrasound-mediated augmented exosome release from astrocytes alleviates amyloid-beta-induced neurotoxicity. Theranostics. 2021;11(9):4351–62. https://doi.org/10.7150/thno.52436 . (PMID: 10.7150/thno.52436337540657977450)
Bobola MS, Chen L, Ezeokeke CK, Olmstead TA, Nguyen C, Sahota A, et al. Transcranial focused ultrasound, pulsed at 40 Hz, activates microglia acutely and reduces Aβ load chronically, as demonstrated in vivo. Brain Stimul. 2020;13(4):1014–23. https://doi.org/10.1016/j.brs.2020.03.016 . (PMID: 10.1016/j.brs.2020.03.016323880447308193)
Hsu CH, Pan YJ, Zheng YT, Lo RY, Yang FY. Ultrasound reduces inflammation by modulating M1/M2 polarization of microglia through STAT1/STAT6/PPARgamma signaling pathways. CNS Neurosci Ther. 2023;29(12):4113–23. https://doi.org/10.1111/cns.14333 . (PMID: 10.1111/cns.143333740104110651950)
Chang JW, Wu MT, Song WS, Yang FY. Ultrasound stimulation suppresses LPS-induced proinflammatory responses by regulating NF-kappaB and CREB activation in microglial cells. Cereb Cortex. 2020;30(8):4597–606. https://doi.org/10.1093/cercor/bhaa062 . (PMID: 10.1093/cercor/bhaa06232248223)
Newman M, Rasiah PK, Kusunose J, Rex TS, Mahadevan-Jansen A, Hardenburger J, et al. Ultrasound modulates calcium activity in cultured neurons, glial cells, endothelial cells and pericytes. Ultrasound Med Biol. 2024;50(3):341–51. https://doi.org/10.1016/j.ultrasmedbio.2023.11.004 . (PMID: 10.1016/j.ultrasmedbio.2023.11.00438087717)
Jayaweera AR, Edwards N, Glasheen WP, Villanueva FS, Abbott RD, Kaul S. In vivo myocardial kinetics of air-filled albumin microbubbles during myocardial contrast echocardiography. Comparison with radiolabeled red blood cells. Circ Res. 1994;74(6):1157–65. https://doi.org/10.1161/01.res.74.6.1157 . (PMID: 10.1161/01.res.74.6.11578187282)
Sridharan A, Eisenbrey JR, Forsberg F, Lorenz N, Steffgen L, Ntoulia A. Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist. Pediatr Radiol. 2021;51(12):2117–27. https://doi.org/10.1007/s00247-021-05080-1 . (PMID: 10.1007/s00247-021-05080-1341178929288183)
Karthikesh MS, Yang X. The effect of ultrasound cavitation on endothelial cells. Exp Biol Med (Maywood). 2021;246(7):758–70. https://doi.org/10.1177/1535370220982301 . (PMID: 10.1177/153537022098230133461340)
Lentacker I, De Cock I, Deckers R, De Smedt SC, Moonen CT. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev. 2014;72:49–64. https://doi.org/10.1016/j.addr.2013.11.008 . (PMID: 10.1016/j.addr.2013.11.00824270006)
Yuan F, Yang C, Zhong P. Cell membrane deformation and bioeffects produced by tandem bubble-induced jetting flow. Proc Natl Acad Sci U S A. 2015;112(51):E7039–47. https://doi.org/10.1073/pnas.1518679112 . (PMID: 10.1073/pnas.1518679112266639134697429)
Qin D, Zhang L, Chang N, Ni P, Zong Y, Bouakaz A, et al. In situ observation of single cell response to acoustic droplet vaporization: membrane deformation, permeabilization, and blebbing. Ultrason Sonochem. 2018;47:141–50. https://doi.org/10.1016/j.ultsonch.2018.02.004 . (PMID: 10.1016/j.ultsonch.2018.02.00429678490)
Friend J, Yeo LY. Microscale acoustofluidics: microfluidics driven via acoustics and ultrasonics. Rev Mod Phys. 2011;83(2):647–704. (PMID: 10.1103/RevModPhys.83.647)
Liu X, Zhang W, Jing Y, Yi S, Farooq U, Shi J, et al. Non-cavitation targeted microbubble-mediated single-cell sonoporation. Micromachines (Basel). 2022;13(1):113. https://doi.org/10.3390/mi13010113 . (PMID: 10.3390/mi1301011335056278)
Chu YC, Lim J, Chien A, Chen CC, Wang JL. Activation of mechanosensitive ion channels by ultrasound. Ultrasound Med Biol. 2022;48(10):1981–94. https://doi.org/10.1016/j.ultrasmedbio.2022.06.008 . (PMID: 10.1016/j.ultrasmedbio.2022.06.00835945063)
Fan Z, Kumon RE, Deng CX. Mechanisms of microbubble-facilitated sonoporation for drug and gene delivery. Ther Deliv. 2014;5(4):467–86. https://doi.org/10.4155/tde.14.10 . (PMID: 10.4155/tde.14.1024856171)
Miller DL, Quddus J. Sonoporation of monolayer cells by diagnostic ultrasound activation of contrast-agent gas bodies. Ultrasound Med Biol. 2000;26(4):661–7. https://doi.org/10.1016/s0301-5629(99)00170-2 . (PMID: 10.1016/s0301-5629(99)00170-210856630)
Tu J, Yu ACH. Ultrasound-mediated drug delivery: sonoporation mechanisms, biophysics, and critical factors. BME Front. 2022;2022:9807347. https://doi.org/10.34133/2022/9807347 . (PMID: 10.34133/2022/98073473785016910521752)
Yang Y, Li Q, Guo X, Tu J, Zhang D. Mechanisms underlying sonoporation: interaction between microbubbles and cells. Ultrason Sonochem. 2020;67:105096. https://doi.org/10.1016/j.ultsonch.2020.105096 . (PMID: 10.1016/j.ultsonch.2020.10509632278246)
Antoniou A, Stavrou M, Evripidou N, Georgiou E, Kousiappa I, Koupparis A, et al. FUS-mediated blood-brain barrier disruption for delivering anti-Abeta antibodies in 5XFAD Alzheimer’s disease mice. J Ultrasound. 2024;27(2):251–62. https://doi.org/10.1007/s40477-023-00805-4 . (PMID: 10.1007/s40477-023-00805-437516718)
Epelbaum S, Burgos N, Canney M, Matthews D, Houot M, Santin MD, et al. Pilot study of repeated blood-brain barrier disruption in patients with mild Alzheimer’s disease with an implantable ultrasound device. Alzheimers Res Ther. 2022;14(1):40. https://doi.org/10.1186/s13195-022-00981-1 . (PMID: 10.1186/s13195-022-00981-1352601788905724)
Geraudie A, Riche M, Lestra T, Trotier A, Dupuis L, Mathon B, et al. Effects of low-intensity pulsed ultrasound-induced blood-brain barrier opening in P301S mice modeling Alzheimer’s disease tauopathies. Int J Mol Sci. 2023. https://doi.org/10.3390/ijms241512411 . (PMID: 10.3390/ijms2415124113756978610419069)
Karakatsani ME, Ji R, Murillo MF, Kugelman T, Kwon N, Lao YH, et al. Focused ultrasound mitigates pathology and improves spatial memory in Alzheimer’s mice and patients. Theranostics. 2023;13(12):4102–20. https://doi.org/10.7150/thno.79898 . (PMID: 10.7150/thno.798983755428410405840)
Kong C, Yang EJ, Shin J, Park J, Kim SH, Park SW, et al. Enhanced delivery of a low dose of aducanumab via FUS in 5xFAD mice, an AD model. Transl Neurodegener. 2022;11(1):57. https://doi.org/10.1186/s40035-022-00333-x . (PMID: 10.1186/s40035-022-00333-x365755349793531)
Zhu Q, Xu X, Chen B, Liao Y, Guan X, He Y, et al. Ultrasound-targeted microbubbles destruction assists dual delivery of beta-amyloid antibody and neural stem cells to restore neural function in transgenic mice of Alzheimer’s disease. Med Phys. 2022;49(3):1357–67. https://doi.org/10.1002/mp.15500 . (PMID: 10.1002/mp.1550035092698)
Arrieta VA, Gould A, Kim KS, Habashy KJ, Dmello C, Vazquez-Cervantes GI, et al. Ultrasound-mediated delivery of doxorubicin to the brain results in immune modulation and improved responses to PD-1 blockade in gliomas. Nat Commun. 2024;15(1):4698. https://doi.org/10.1038/s41467-024-48326-w . (PMID: 10.1038/s41467-024-48326-w3884477011156895)
Habashy KJ, Dmello C, Chen L, Arrieta VA, Kim KS, Gould A, et al. Paclitaxel and carboplatin in combination with low-intensity pulsed ultrasound for glioblastoma. Clin Cancer Res. 2024;30(8):1619–29. https://doi.org/10.1158/1078-0432.CCR-23-2367 . (PMID: 10.1158/1078-0432.CCR-23-23673829514412217717)
Sonabend AM, Gould A, Amidei C, Ward R, Schmidt KA, Zhang DY, et al. Repeated blood-brain barrier opening with an implantable ultrasound device for delivery of albumin-bound paclitaxel in patients with recurrent glioblastoma: a phase 1 trial. Lancet Oncol. 2023;24(5):509–22. https://doi.org/10.1016/S1470-2045(23)00112-2 . (PMID: 10.1016/S1470-2045(23)00112-23714237310256454)
Wei HJ, Upadhyayula PS, Pouliopoulos AN, Englander ZK, Zhang X, Jan CI, et al. Focused ultrasound-mediated blood-brain barrier opening increases delivery and efficacy of etoposide for glioblastoma treatment. Int J Radiat Oncol Biol Phys. 2021;110(2):539–50. https://doi.org/10.1016/j.ijrobp.2020.12.019 . (PMID: 10.1016/j.ijrobp.2020.12.01933346092)
Feroze RA, Kopechek J, Zhu J, Chen X, Villanueva FS. Ultrasound-induced microbubble cavitation for targeted delivery of MiR-29b mimic to treat cardiac fibrosis. Ultrasound Med Biol. 2023;49(12):2573–80. https://doi.org/10.1016/j.ultrasmedbio.2023.08.025 . (PMID: 10.1016/j.ultrasmedbio.2023.08.02537749011)
Li S, Chen C, Lof J, Stolze EA, Sklenar J, Chen X, et al. Acoustic activation imaging with intravenous perfluoropropane nanodroplets results in selective bioactivation of the risk area. J Ultrasound Med. 2024;43(6):1063–80. https://doi.org/10.1002/jum.16435 . (PMID: 10.1002/jum.164353844092611093707)
Qin X, Cai P, Liu C, Chen K, Jiang X, Chen W, et al. Cardioprotective effect of ultrasound-targeted destruction of Sirt3-loaded cationic microbubbles in a large animal model of pathological cardiac hypertrophy. Acta Biomater. 2023;164:604–25. https://doi.org/10.1016/j.actbio.2023.04.020 . (PMID: 10.1016/j.actbio.2023.04.02037080445)
Wu Y, Deng C, Xu J, Wang W, Chen Y, Qin X, et al. Enhanced local delivery of microRNA-145a-5P into mouse aorta via ultrasound-targeted microbubble destruction inhibits atherosclerotic plaque formation. Mol Pharm. 2023;20(2):1086–95. https://doi.org/10.1021/acs.molpharmaceut.2c00799 . (PMID: 10.1021/acs.molpharmaceut.2c0079936656656)
Dasgupta A, Saifuddin M, McNabb E, Ho L, Lu L, Vesprini D, et al. Novel MRI-guided focussed ultrasound stimulated microbubble radiation enhancement treatment for breast cancer. Sci Rep. 2023;13(1):13566. https://doi.org/10.1038/s41598-023-40551-5 . (PMID: 10.1038/s41598-023-40551-53760498810442356)
Moore-Palhares D, Dasgupta A, Saifuddin M, Anzola Pena ML, Prasla S, Ho L, et al. Radiation enhancement using focussed ultrasound-stimulated microbubbles for breast cancer: a phase 1 clinical trial. PLoS Med. 2024;21(5):e1004408. https://doi.org/10.1371/journal.pmed.1004408 . (PMID: 10.1371/journal.pmed.10044083875896711146716)
Xiong X, Zhou H, Xu X, Fu Q, Wan Y, Cao Y, et al. Ultrasound molecular imaging enhances high-intensity focused ultrasound ablation on liver cancer with B7–H3-targeted microbubbles. Cancer Med. 2024;13(20):e70341. https://doi.org/10.1002/cam4.70341 . (PMID: 10.1002/cam4.703413943164411492419)
Jeong H, Song IU, Chung YA, Park JS, Na SH, Im JJ, et al. Short-term efficacy of transcranial focused ultrasound to the hippocampus in Alzheimer’s disease: a preliminary study. J Pers Med. 2022. https://doi.org/10.3390/jpm12020250 . (PMID: 10.3390/jpm12020250365795969783652)
Kuhn T, Spivak NM, Dang BH, Becerra S, Halavi SE, Rotstein N, et al. Transcranial focused ultrasound selectively increases perfusion and modulates functional connectivity of deep brain regions in humans. Front Neural Circuits. 2023;17:1120410. https://doi.org/10.3389/fncir.2023.1120410 . (PMID: 10.3389/fncir.2023.11204103709131810114286)
Niu X, Yu K, He B. Transcranial focused ultrasound induces sustained synaptic plasticity in rat hippocampus. Brain Stimul. 2022;15(2):352–9. https://doi.org/10.1016/j.brs.2022.01.015 . (PMID: 10.1016/j.brs.2022.01.015351046649295311)
Lattwein KR, Shekhar H, Kouijzer JJP, van Wamel WJB, Holland CK, Kooiman K. Sonobactericide: an emerging treatment strategy for bacterial infections. Ultrasound Med Biol. 2020;46(2):193–215. https://doi.org/10.1016/j.ultrasmedbio.2019.09.011 . (PMID: 10.1016/j.ultrasmedbio.2019.09.01131699550)
Aron M, Stride EP. Quantifying the role of microstreaming in sonoporation. J Acoust Soc Am. 2022;151(4_Supplement):A154–5. (PMID: 10.1121/10.0010952)
Meng L, Liu X, Wang Y, Zhang W, Zhou W, Cai F, et al. Sonoporation of cells by a parallel stable cavitation microbubble array. Adv Sci. 2019;6(17):1900557. https://doi.org/10.1002/advs.201900557 . (PMID: 10.1002/advs.201900557)
Przystupski D, Baczynska D, Rossowska J, Kulbacka J, Ussowicz M. Calcium ion delivery by microbubble-assisted sonoporation stimulates cell death in human gastrointestinal cancer cells. Biomed Pharmacother. 2024;179:117339. https://doi.org/10.1016/j.biopha.2024.117339 . (PMID: 10.1016/j.biopha.2024.11733939216448)
Skachkov I, Luan Y, van der Steen AF, de Jong N, Kooiman K. Targeted microbubble mediated sonoporation of endothelial cells in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61(10):1661–7. https://doi.org/10.1109/TUFFC.2014.006440 . (PMID: 10.1109/TUFFC.2014.00644025265175)
Fan Z, Kumon RE, Park J, Deng CX. Intracellular delivery and calcium transients generated in sonoporation facilitated by microbubbles. J Control Release. 2010;142(1):31–9. https://doi.org/10.1016/j.jconrel.2009.09.031 . (PMID: 10.1016/j.jconrel.2009.09.03119818371)
Juffermans LJ, Dijkmans PA, Musters RJ, Visser CA, Kamp O. Transient permeabilization of cell membranes by ultrasound-exposed microbubbles is related to formation of hydrogen peroxide. Am J Physiol Heart Circ Physiol. 2006;291(4):H1595–601. https://doi.org/10.1152/ajpheart.01120.2005 . (PMID: 10.1152/ajpheart.01120.200516632548)
Kumon RE, Aehle M, Sabens D, Parikh P, Kourennyi D, Deng CX. Ultrasound-induced calcium oscillations and waves in Chinese hamster ovary cells in the presence of microbubbles. Biophys J. 2007;93(6):L29-31. https://doi.org/10.1529/biophysj.107.113365 . (PMID: 10.1529/biophysj.107.113365176315371959545)
Park J, Fan Z, Kumon RE, El-Sayed ME, Deng CX. Modulation of intracellular Ca2+ concentration in brain microvascular endothelial cells in vitro by acoustic cavitation. Ultrasound Med Biol. 2010;36(7):1176–87. https://doi.org/10.1016/j.ultrasmedbio.2010.04.006 . (PMID: 10.1016/j.ultrasmedbio.2010.04.006206207043139909)
Juffermans LJ, van Dijk A, Jongenelen CA, Drukarch B, Reijerkerk A, de Vries HE, et al. Ultrasound and microbubble-induced intra- and intercellular bioeffects in primary endothelial cells. Ultrasound Med Biol. 2009;35(11):1917–27. https://doi.org/10.1016/j.ultrasmedbio.2009.06.1091 . (PMID: 10.1016/j.ultrasmedbio.2009.06.109119766381)
Klinger AL, Pichette B, Sobolewski P, Eckmann DM. Mechanotransductional basis of endothelial cell response to intravascular bubbles. Integr Biol (Camb). 2011;3(10):1033–42. https://doi.org/10.1039/c1ib00017a . (PMID: 10.1039/c1ib00017a21931900)
Sobolewski P, Kandel J, Klinger AL, Eckmann DM. Air bubble contact with endothelial cells in vitro induces calcium influx and IP3-dependent release of calcium stores. Am J Physiol Cell Physiol. 2011;301(3):C679–86. https://doi.org/10.1152/ajpcell.00046.2011 . (PMID: 10.1152/ajpcell.00046.2011216330773273994)
Li F, Yang C, Yuan F, Liao D, Li T, Guilak F, et al. Dynamics and mechanisms of intracellular calcium waves elicited by tandem bubble-induced jetting flow. Proc Natl Acad Sci U S A. 2018;115(3):E353–62. https://doi.org/10.1073/pnas.1713905115 . (PMID: 10.1073/pnas.171390511529282315)
Paranjape AN, Chen X, Villanueva FS. Calcium influx via mechanosensitive piezo1 channels regulates ultrasound targeted microbubble cavitation-induced endothelial hyperpermeability. J Acoust Soc Am. 2023;153(3_supplement):A99. https://doi.org/10.1121/10.0018298 . (PMID: 10.1121/10.0018298)
Paranjape AN, D’Aiuto L, Zheng W, Chen X, Villanueva FS. A multicellular brain spheroid model for studying the mechanisms and bioeffects of ultrasound-enhanced drug penetration beyond the blood-brain barrier. Sci Rep. 2024;14(1):1909. https://doi.org/10.1038/s41598-023-50203-3 . (PMID: 10.1038/s41598-023-50203-33825366910803331)
Ibsen S, Tong A, Schutt C, Esener S, Chalasani SH. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun. 2015;6:8264. https://doi.org/10.1038/ncomms9264 . (PMID: 10.1038/ncomms926426372413)
Juffermans LJ, Kamp O, Dijkmans PA, Visser CA, Musters RJ. Low-intensity ultrasound-exposed microbubbles provoke local hyperpolarization of the cell membrane via activation of BK(Ca) channels. Ultrasound Med Biol. 2008;34(3):502–8. https://doi.org/10.1016/j.ultrasmedbio.2007.09.010 . (PMID: 10.1016/j.ultrasmedbio.2007.09.01017993242)
Beekers I, Mastik F, Beurskens R, Tang PY, Vegter M, van der Steen AFW, et al. High-resolution imaging of intracellular calcium fluctuations caused by oscillating microbubbles. Ultrasound Med Biol. 2020;46(8):2017–29. https://doi.org/10.1016/j.ultrasmedbio.2020.03.029 . (PMID: 10.1016/j.ultrasmedbio.2020.03.02932402676)
Meijering BD, Juffermans LJ, van Wamel A, Henning RH, Zuhorn IS, Emmer M, et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circ Res. 2009;104(5):679–87. https://doi.org/10.1161/CIRCRESAHA.108.183806 . (PMID: 10.1161/CIRCRESAHA.108.18380619168443)
Memari E, Hui F, Yusefi H, Helfield B. Fluid flow influences ultrasound-assisted endothelial membrane permeabilization and calcium flux. J Control Release. 2023;358:333–44. https://doi.org/10.1016/j.jconrel.2023.05.004 . (PMID: 10.1016/j.jconrel.2023.05.00437150403)
Li F, Park TH, Sankin G, Gilchrist C, Liao D, Chan CU, et al. Mechanically induced integrin ligation mediates intracellular calcium signaling with single pulsating cavitation bubbles. Theranostics. 2021;11(12):6090–104. https://doi.org/10.7150/thno.56813 . (PMID: 10.7150/thno.56813338979018058710)
Helfield B, Chen X, Watkins SC, Villanueva FS. Transendothelial perforations and the sphere of influence of single-site sonoporation. Ultrasound Med Biol. 2020;46(7):1686–97. https://doi.org/10.1016/j.ultrasmedbio.2020.02.017 . (PMID: 10.1016/j.ultrasmedbio.2020.02.017324026757293920)
Ranade SS, Qiu Z, Woo SH, Hur SS, Murthy SE, Cahalan SM, et al. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. Proc Natl Acad Sci U S A. 2014;111(28):10347–52. https://doi.org/10.1073/pnas.1409233111 . (PMID: 10.1073/pnas.1409233111249588524104881)
Qiu Z, Guo J, Kala S, Zhu J, Xian Q, Qiu W, et al. The mechanosensitive ion channel Piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. iScience. 2019;21:448–57. https://doi.org/10.1016/j.isci.2019.10.037 . (PMID: 10.1016/j.isci.2019.10.037317072586849147)
Conway GE, Paranjape AN, Chen X, Villanueva FS. Development of an in vitro model to study mechanisms of ultrasound-targeted microbubble cavitation-mediated blood-brain barrier opening. Ultrasound Med Biol. 2024;50(3):425–33. https://doi.org/10.1016/j.ultrasmedbio.2023.12.005 . (PMID: 10.1016/j.ultrasmedbio.2023.12.00538158246)
Song Y, Chen J, Zhang C, Xin L, Li Q, Liu Y, et al. Mechanosensitive channel Piezo1 induces cell apoptosis in pancreatic cancer by ultrasound with microbubbles. iScience. 2022;25(2):103733. https://doi.org/10.1016/j.isci.2022.103733 . (PMID: 10.1016/j.isci.2022.103733351183548792083)
Lee NS, Yoon CW, Wang Q, Moon S, Koo KM, Jung H, et al. Focused ultrasound stimulates ER localized mechanosensitive PANNEXIN-1 to mediate intracellular calcium release in invasive cancer cells. Front Cell Dev Biol. 2020;8:504. https://doi.org/10.3389/fcell.2020.00504 . (PMID: 10.3389/fcell.2020.00504326562137325310)
Alonso A, Reinz E, Fatar M, Jenne J, Hennerici MG, Meairs S. Neurons but not glial cells overexpress ubiquitin in the rat brain following focused ultrasound-induced opening of the blood-brain barrier. Neuroscience. 2010;169(1):116–24. https://doi.org/10.1016/j.neuroscience.2010.04.001 . (PMID: 10.1016/j.neuroscience.2010.04.00120416361)
Hassan MA, Campbell P, Kondo T. The role of Ca(2+) in ultrasound-elicited bioeffects: progress, perspectives and prospects. Drug Discov Today. 2010;15(21–22):892–906. https://doi.org/10.1016/j.drudis.2010.08.005 . (PMID: 10.1016/j.drudis.2010.08.00520727981)
Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21(7):363–83. https://doi.org/10.1038/s41580-020-0230-3 . (PMID: 10.1038/s41580-020-0230-332231263)
Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature. 2000;408(6809):239–47. https://doi.org/10.1038/35041687 . (PMID: 10.1038/3504168711089981)
Basta G, Venneri L, Lazzerini G, Pasanisi E, Pianelli M, Vesentini N, et al. In vitro modulation of intracellular oxidative stress of endothelial cells by diagnostic cardiac ultrasound. Cardiovasc Res. 2003;58(1):156–61. https://doi.org/10.1016/s0008-6363(02)00665-x . (PMID: 10.1016/s0008-6363(02)00665-x12667957)
Jia C, Xu L, Han T, Cai P, Yu ACH, Qin P. Generation of reactive oxygen species in heterogeneously sonoporated cells by microbubbles with single-pulse ultrasound. Ultrasound Med Biol. 2018;44(5):1074–85. https://doi.org/10.1016/j.ultrasmedbio.2018.01.006 . (PMID: 10.1016/j.ultrasmedbio.2018.01.00629499918)
Honda H, Kondo T, Zhao QL, Feril LB Jr., Kitagawa H. Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound Med Biol. 2004;30(5):683–92. https://doi.org/10.1016/j.ultrasmedbio.2004.02.008 . (PMID: 10.1016/j.ultrasmedbio.2004.02.00815183235)
Lancaster JR Jr. Historical origins of the discovery of mammalian nitric oxide (nitrogen monoxide) production/physiology/pathophysiology. Biochem Pharmacol. 2020;176:113793. https://doi.org/10.1016/j.bcp.2020.113793 . (PMID: 10.1016/j.bcp.2020.11379331923387)
Suchkova VN, Baggs RB, Sahni SK, Francis CW. Ultrasound improves tissue perfusion in ischemic tissue through a nitric oxide dependent mechanism. Thromb Haemost. 2002;88(5):865–70. (PMID: 10.1055/s-0037-161331512428107)
Altland OD, Dalecki D, Suchkova VN, Francis CW. Low-intensity ultrasound increases endothelial cell nitric oxide synthase activity and nitric oxide synthesis. J Thromb Haemost. 2004;2(4):637–43. https://doi.org/10.1111/j.1538-7836.2004.00655.x . (PMID: 10.1111/j.1538-7836.2004.00655.x15102020)
Yu GZ, Istvanic F, Chen X, Nouraie M, Shiva S, Straub AC, et al. Ultrasound-targeted microbubble cavitation with sodium nitrite synergistically enhances nitric oxide production and microvascular perfusion. Ultrasound Med Biol. 2020;46(3):667–78. https://doi.org/10.1016/j.ultrasmedbio.2019.10.012 . (PMID: 10.1016/j.ultrasmedbio.2019.10.01231810801)
Yu FTH, Chen X, Straub AC, Pacella JJ. The role of nitric oxide during sonoreperfusion of microvascular obstruction. Theranostics. 2017;7(14):3527–38. https://doi.org/10.7150/thno.19422 . (PMID: 10.7150/thno.19422289128935596441)
Qiu S, Li D, Wang Y, Xiu J, Lyu C, Kutty S, et al. Ultrasound-mediated microbubble cavitation transiently reverses acute hindlimb tissue ischemia through augmentation of microcirculation perfusion via the eNOS/NO pathway. Ultrasound Med Biol. 2021;47(4):1014–23. https://doi.org/10.1016/j.ultrasmedbio.2020.12.028 . (PMID: 10.1016/j.ultrasmedbio.2020.12.02833487472)
Mark KS, Burroughs AR, Brown RC, Huber JD, Davis TP. Nitric oxide mediates hypoxia-induced changes in paracellular permeability of cerebral microvasculature. Am J Physiol Heart Circ Physiol. 2004;286(1):H174–80. https://doi.org/10.1152/ajpheart.00669.2002 . (PMID: 10.1152/ajpheart.00669.200212958038)
Jalali S, Huang Y, Dumont DJ, Hynynen K. Focused ultrasound-mediated bbb disruption is associated with an increase in activation of AKT: experimental study in rats. BMC Neurol. 2010;10:114. https://doi.org/10.1186/1471-2377-10-114 . (PMID: 10.1186/1471-2377-10-114210781653020671)
Hauser J, Ellisman M, Steinau HU, Stefan E, Dudda M, Hauser M. Ultrasound enhanced endocytotic activity of human fibroblasts. Ultrasound Med Biol. 2009;35(12):2084–92. https://doi.org/10.1016/j.ultrasmedbio.2009.06.1090 . (PMID: 10.1016/j.ultrasmedbio.2009.06.109019828232)
De Cock I, Zagato E, Braeckmans K, Luan Y, de Jong N, De Smedt SC, et al. Ultrasound and microbubble mediated drug delivery: acoustic pressure as determinant for uptake via membrane pores or endocytosis. J Control Release. 2015;197:20–8. https://doi.org/10.1016/j.jconrel.2014.10.031 . (PMID: 10.1016/j.jconrel.2014.10.03125449801)
Zeghimi A, Escoffre JM, Bouakaz A. Role of endocytosis in sonoporation-mediated membrane permeabilization and uptake of small molecules: a electron microscopy study. Phys Biol. 2015;12(6):066007. https://doi.org/10.1088/1478-3975/12/6/066007 . (PMID: 10.1088/1478-3975/12/6/06600726599283)
Qin P, Han T, Yu ACH, Xu L. Mechanistic understanding the bioeffects of ultrasound-driven microbubbles to enhance macromolecule delivery. J Control Release. 2018;272:169–81. https://doi.org/10.1016/j.jconrel.2018.01.001 . (PMID: 10.1016/j.jconrel.2018.01.00129305924)
Fekri F, Delos Santos RC, Karshafian R, Antonescu CN. Ultrasound microbubble treatment enhances clathrin-mediated endocytosis and fluid-phase uptake through distinct mechanisms. PLoS ONE. 2016;11(6):e0156754. https://doi.org/10.1371/journal.pone.0156754 . (PMID: 10.1371/journal.pone.0156754272758664898768)
Li Y, Du M, Fang J, Zhou J, Chen Z. UTMD promoted local delivery of miR-34a-mimic for ovarian cancer therapy. Drug Deliv. 2021;28(1):1616–25. https://doi.org/10.1080/10717544.2021.1955041 . (PMID: 10.1080/10717544.2021.1955041343192048330777)
Rong N, Zhou H, Liu R, Wang Y, Fan Z. Ultrasound and microbubble mediated plasmid DNA uptake: a fast, global and multi-mechanisms involved process. J Control Release. 2018;273:40–50. https://doi.org/10.1016/j.jconrel.2018.01.014 . (PMID: 10.1016/j.jconrel.2018.01.01429407677)
van Elburg B, Deprez J, van den Broek M, De Smedt SC, Versluis M, Lajoinie G, et al. Dependence of sonoporation efficiency on microbubble size: an in vitro monodisperse microbubble study. J Control Release. 2023;363:747–55. https://doi.org/10.1016/j.jconrel.2023.09.047 . (PMID: 10.1016/j.jconrel.2023.09.04737778466)
Pandit R, Koh WK, Sullivan RKP, Palliyaguru T, Parton RG, Gotz J. Role for caveolin-mediated transcytosis in facilitating transport of large cargoes into the brain via ultrasound. J Control Release. 2020;327:667–75. https://doi.org/10.1016/j.jconrel.2020.09.015 . (PMID: 10.1016/j.jconrel.2020.09.01532918963)
Deng J, Huang Q, Wang F, Liu Y, Wang Z, Wang Z, et al. The role of caveolin-1 in blood-brain barrier disruption induced by focused ultrasound combined with microbubbles. J Mol Neurosci. 2012;46(3):677–87. https://doi.org/10.1007/s12031-011-9629-9 . (PMID: 10.1007/s12031-011-9629-921861133)
Olsman M, Sereti V, Muhlenpfordt M, Johnsen KB, Andresen TL, Urquhart AJ, et al. Focused ultrasound and microbubble treatment increases delivery of transferrin receptor-targeting liposomes to the brain. Ultrasound Med Biol. 2021;47(5):1343–55. https://doi.org/10.1016/j.ultrasmedbio.2021.01.014 . (PMID: 10.1016/j.ultrasmedbio.2021.01.01433608142)
Rodgers LS, Fanning AS. Regulation of epithelial permeability by the actin cytoskeleton. Cytoskeleton. 2011;68(12):653–60. https://doi.org/10.1002/cm.20547 . (PMID: 10.1002/cm.2054722083950)
Millan J, Cain RJ, Reglero-Real N, Bigarella C, Marcos-Ramiro B, Fernandez-Martin L, et al. Adherens junctions connect stress fibres between adjacent endothelial cells. BMC Biol. 2010;8:11. https://doi.org/10.1186/1741-7007-8-11 . (PMID: 10.1186/1741-7007-8-11201222542845098)
Efimova N, Svitkina TM. Branched actin networks push against each other at adherens junctions to maintain cell-cell adhesion. J Cell Biol. 2018;217(5):1827–45. https://doi.org/10.1083/jcb.201708103 . (PMID: 10.1083/jcb.201708103295071275940301)
McQueen A, Warboys CM. Mechanosignalling pathways that regulate endothelial barrier function. Curr Opin Cell Biol. 2023;84:102213. https://doi.org/10.1016/j.ceb.2023.102213 . (PMID: 10.1016/j.ceb.2023.10221337531894)
Cheng H, Zhong W, Wang L, Zhang Q, Ma X, Wang Y, et al. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed Pharmacother. 2023;158:114198. https://doi.org/10.1016/j.biopha.2022.114198 . (PMID: 10.1016/j.biopha.2022.11419836916427)
He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: from mechanisms to therapeutics. Pharmacol Ther. 2022;235:108152. https://doi.org/10.1016/j.pharmthera.2022.108152 . (PMID: 10.1016/j.pharmthera.2022.10815235122834)
Noria S, Cowan DB, Gotlieb AI, Langille BL. Transient and steady-state effects of shear stress on endothelial cell adherens junctions. Circ Res. 1999;85(6):504–14. https://doi.org/10.1161/01.res.85.6.504 . (PMID: 10.1161/01.res.85.6.50410488053)
Fan P, Zhang Y, Guo X, Cai C, Wang M, Yang D, et al. Cell-cycle-specific cellular responses to sonoporation. Theranostics. 2017;7(19):4894–908. https://doi.org/10.7150/thno.20820 . (PMID: 10.7150/thno.20820291879125706108)
Chen X, Leow RS, Hu Y, Wan JM, Yu AC. Single-site sonoporation disrupts actin cytoskeleton organization. J R Soc Interface. 2014;11(95):20140071. https://doi.org/10.1098/rsif.2014.0071 . (PMID: 10.1098/rsif.2014.0071246719364006247)
Zeghimi A, Escoffre J-M, Bouakaz A. Involvement of cytoskeleton in sonoporation and drug delivery. In: 2014 IEEE International Ultrasonics Symposium. Chicago (IL), United States: 2014. p 850–3.
Wang M, Zhang Y, Cai C, Tu J, Guo X, Zhang D. Sonoporation-induced cell membrane permeabilization and cytoskeleton disassembly at varied acoustic and microbubble-cell parameters. Sci Rep. 2018;8(1):3885. https://doi.org/10.1038/s41598-018-22056-8 . (PMID: 10.1038/s41598-018-22056-8294970825832802)
Jia C, Shi J, Han T, Yu ACH, Qin P. Spatiotemporal dynamics and mechanisms of actin cytoskeletal re-modeling in cells perforated by ultrasound-driven microbubbles. Ultrasound Med Biol. 2022;48(5):760–77. https://doi.org/10.1016/j.ultrasmedbio.2021.12.014 . (PMID: 10.1016/j.ultrasmedbio.2021.12.01435190224)
Meijlink B, van der Kooij HR, Wang Y, Li H, Huveneers S, Kooiman K. Ultrasound-activated microbubbles mediate F-actin disruptions and endothelial gap formation during sonoporation. J Control Release. 2024;376:1176–89. https://doi.org/10.1016/j.jconrel.2024.10.066 . (PMID: 10.1016/j.jconrel.2024.10.06639500409)
Silvani G, Scognamiglio C, Caprini D, Marino L, Chinappi M, Sinibaldi G, et al. Reversible cavitation-induced junctional opening in an artificial endothelial layer. Small. 2019;15(51):e1905375. https://doi.org/10.1002/smll.201905375 . (PMID: 10.1002/smll.20190537531762158)
Bekeredjian R, Chen S, Pan W, Grayburn PA, Shohet RV. Effects of ultrasound-targeted microbubble destruction on cardiac gene expression. Ultrasound Med Biol. 2004;30(4):539–43. https://doi.org/10.1016/j.ultrasmedbio.2003.12.006 . (PMID: 10.1016/j.ultrasmedbio.2003.12.00615121256)
Haugse R, Langer A, Murvold ET, Costea DE, Gjertsen BT, Gilja OH, et al. Low-intensity sonoporation-induced intracellular signalling of pancreatic cancer cells, fibroblasts and endothelial cells. Pharmaceutics. 2020. https://doi.org/10.3390/pharmaceutics12111058 . (PMID: 10.3390/pharmaceutics12111058331719477694645)
Duan X, Zhou Q, Wan JMF, Yu ACH. Sonoporation generates downstream cellular impact after membrane resealing. Sci Rep. 2021;11(1):5161. https://doi.org/10.1038/s41598-021-84341-3 . (PMID: 10.1038/s41598-021-84341-3336643157933147)
Shi D, Guo L, Sun X, Shang M, Meng D, Zhou X, et al. UTMD inhibit EMT of breast cancer through the ROS/miR-200c/ZEB1 axis. Sci Rep. 2020;10(1):6657. https://doi.org/10.1038/s41598-020-63653-w . (PMID: 10.1038/s41598-020-63653-w323130937170845)
Mathew AS, Gorick CM, Price RJ. Multiple regression analysis of a comprehensive transcriptomic data assembly elucidates mechanically- and biochemically-driven responses to focused ultrasound blood-brain barrier disruption. Theranostics. 2021;11(20):9847–58. https://doi.org/10.7150/thno.65064 . (PMID: 10.7150/thno.65064348157908581408)
Mathew AS, Gorick CM, Price RJ. Single-cell mapping of focused ultrasound-transfected brain. Gene Ther. 2023;30(3–4):255–63. https://doi.org/10.1038/s41434-021-00226-0 . (PMID: 10.1038/s41434-021-00226-033526842)
Kovacs ZI, Kim S, Jikaria N, Qureshi F, Milo B, Lewis BK, et al. Disrupting the blood-brain barrier by focused ultrasound induces sterile inflammation. Proc Natl Acad Sci U S A. 2017;114(1):E75–84. https://doi.org/10.1073/pnas.1614777114 . (PMID: 10.1073/pnas.161477711427994152)
McMahon D, Bendayan R, Hynynen K. Acute effects of focused ultrasound-induced increases in blood-brain barrier permeability on rat microvascular transcriptome. Sci Rep. 2017;7:45657. https://doi.org/10.1038/srep45657 . (PMID: 10.1038/srep45657283747535379491)
McMahon D, Hynynen K. Acute inflammatory response following increased blood-brain barrier permeability induced by focused ultrasound is dependent on microbubble dose. Theranostics. 2017;7(16):3989–4000. https://doi.org/10.7150/thno.21630 . (PMID: 10.7150/thno.21630291097935667420)
Gorick CM, Mathew AS, Garrison WJ, Thim EA, Fisher DG, Copeland CA, et al. Sonoselective transfection of cerebral vasculature without blood-brain barrier disruption. Proc Natl Acad Sci U S A. 2020;117(11):5644–54. https://doi.org/10.1073/pnas.1914595117 . (PMID: 10.1073/pnas.1914595117321230817084076)
Ji R, Karakatsani ME, Burgess M, Smith M, Murillo MF, Konofagou EE. Cavitation-modulated inflammatory response following focused ultrasound blood-brain barrier opening. J Control Release. 2021;337:458–71. https://doi.org/10.1016/j.jconrel.2021.07.042 . (PMID: 10.1016/j.jconrel.2021.07.042343248958440441)
Rigollet S, Rome C, Ador T, Dumont E, Pichon C, Delalande A, et al. FUS-mediated BBB opening leads to transient perfusion decrease and inflammation without acute or chronic brain lesion. Theranostics. 2024;14(10):4147–60. https://doi.org/10.7150/thno.96721 . (PMID: 10.7150/thno.967213899402511234282)
Poon C, Pellow C, Hynynen K. Neutrophil recruitment and leukocyte response following focused ultrasound and microbubble mediated blood-brain barrier treatments. Theranostics. 2021;11(4):1655–71. https://doi.org/10.7150/thno.52710 . (PMID: 10.7150/thno.52710334087737778596)
Guo Y, Lee H, Kim C, Park C, Yamamichi A, Chuntova P, et al. Ultrasound frequency-controlled microbubble dynamics in brain vessels regulate the enrichment of inflammatory pathways in the blood-brain barrier. Nat Commun. 2024;15(1):8021. https://doi.org/10.1038/s41467-024-52329-y . (PMID: 10.1038/s41467-024-52329-y3927172111399249)
Grant Information:
R01EB026966 United States NH NIH HHS
Contributed Indexing:
Keywords: Bioeffects; Calcium; Drug delivery; Endothelial cells; Microbubbles; Ultrasound
Substance Nomenclature:
SY7Q814VUP (Calcium)
Entry Date(s):
Date Created: 20251114 Date Completed: 20251114 Latest Revision: 20251114
Update Code:
20251114
DOI:
10.1007/s11886-025-02278-9
PMID:
41236581
Database:
MEDLINE

Weitere Informationen

Purpose of Review: Ultrasound-targeted microbubble cavitation (UTMC) has emerged as a transformative non-invasive technology in diagnostic imaging, therapy, and targeted gene and drug delivery. As UTMC advances toward clinical translation, understanding its impact on fundamental cellular functions is essential.
Recent Findings: Recent studies on UTMC have provided insights into its effects on biological processes. These include transient membrane opening and resealing (sonoporation), calcium ion (Ca <sup>2+</sup> ) influx, generation of free radicals, nitric oxide synthesis, cytoskeletal remodeling, inter-endothelial gap formation, gene expression changes, and neuroinflammation. This review explores the mechanisms underlying UTMC, with a focus on ultrasound-targeted microbubble cavitation and its bioeffects on cellular function. We examine the molecular processes induced by cavitation, including sonoporation and Ca <sup>2+</sup> influx, and highlight their effects on key biological processes.
(© 2025. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)

Compliance with Ethical Standards. Conflict of interest: The authors declare that they have no conflict of interest. Human and Animal Rights and Informed Consent: This article does not contain any studies with human or animal subjects performed by any of the authors.