Treffer: Utility of Harmonisation for Fixel-Based Metrics in Travelling Subjects and Alzheimer's Disease Data.

Title:
Utility of Harmonisation for Fixel-Based Metrics in Travelling Subjects and Alzheimer's Disease Data.
Authors:
Zou R; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.; Department of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan., Kamagata K; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan., Mito R; Department of Psychiatry, The University of Melbourne, Melbourne, Victoria, Australia.; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia., Takabayashi K; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan., Andica C; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.; Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, Japan., Uchida W; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.; Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, Japan., Guo S; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan., Kitagawa T; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.; Department of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan., Fujita S; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan., Uematsu A; Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan., Maikusa N; Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan., Koike S; Center for Evolutionary Cognitive Sciences, Graduate School of Art and Sciences, The University of Tokyo, Tokyo, Japan., Aoki S; Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo, Japan.; Department of Data Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.; Faculty of Health Data Science, Juntendo University, Urayasu, Chiba, Japan.
Source:
Human brain mapping [Hum Brain Mapp] 2025 Nov; Vol. 46 (16), pp. e70408.
Publication Type:
Journal Article; Multicenter Study
Language:
English
Journal Info:
Publisher: Wiley Country of Publication: United States NLM ID: 9419065 Publication Model: Print Cited Medium: Internet ISSN: 1097-0193 (Electronic) Linking ISSN: 10659471 NLM ISO Abbreviation: Hum Brain Mapp Subsets: MEDLINE
Imprint Name(s):
Publication: New York : Wiley
Original Publication: New York : Wiley-Liss, c1993-
References:
Neuroimage. 2017 Jan 1;144(Pt A):58-73. (PMID: 27639350)
Nature. 2022 Mar;603(7902):654-660. (PMID: 35296861)
Neuroimage. 2016 Nov 15;142:394-406. (PMID: 27523449)
PLoS Biol. 2019 Apr 18;17(4):e3000042. (PMID: 30998673)
Med Image Comput Comput Assist Interv. 2015 Oct;9349:12-19. (PMID: 27754499)
Neuroimage. 2007 Jan 1;34(1):144-55. (PMID: 17070705)
Neuroimage. 2004;23 Suppl 1:S208-19. (PMID: 15501092)
Neuroimage. 2023 Jul 1;274:120125. (PMID: 37084926)
Mov Disord. 2023 Nov;38(11):2019-2030. (PMID: 37608502)
Hum Brain Mapp. 2002 Jan;15(1):1-25. (PMID: 11747097)
J Psychiatr Res. 1975 Nov;12(3):189-98. (PMID: 1202204)
J Neurosci. 2024 May 1;44(18):. (PMID: 38565289)
Brain Struct Funct. 2022 Jul;227(6):2111-2125. (PMID: 35604444)
Biostatistics. 2007 Jan;8(1):118-27. (PMID: 16632515)
Neuroimage. 2018 Dec;183:239-253. (PMID: 30086412)
Front Aging Neurosci. 2014 Sep 11;6:241. (PMID: 25309426)
Neuroimage Clin. 2019;21:101668. (PMID: 30690418)
J Bone Joint Surg Am. 2009 May;91 Suppl 3:80-6. (PMID: 19411504)
Neuroimage. 2018 Feb 15;167:104-120. (PMID: 29155184)
Hum Brain Mapp. 2010 Dec;31(12):1862-75. (PMID: 20162601)
Neurology. 2010 Jan 19;74(3):201-9. (PMID: 20042704)
Neuroradiology. 2020 Apr;62(4):483-494. (PMID: 31883043)
Hum Brain Mapp. 2024 Dec 15;45(18):e70085. (PMID: 39704541)
Neuroimage. 2017 Nov 1;161:149-170. (PMID: 28826946)
Neuroimage. 2011 Jun 1;56(3):1171-80. (PMID: 21316463)
Eur Arch Psychiatry Clin Neurosci. 2023 Dec;273(8):1797-1812. (PMID: 37012463)
Neuroimage. 1999 Feb;9(2):179-94. (PMID: 9931268)
Behav Brain Funct. 2024 May 22;20(1):12. (PMID: 38778325)
Neuroimage Clin. 2021;30:102600. (PMID: 33741307)
Brain Imaging Behav. 2018 Feb;12(1):284-295. (PMID: 28176263)
Neuroimage. 2019 Nov 15;202:116137. (PMID: 31473352)
Neuroimage. 2016 Apr 15;130:194-213. (PMID: 26872408)
Front Neuroinform. 2019 Feb 19;13:2. (PMID: 30837858)
Med Image Anal. 2019 Dec;58:101559. (PMID: 31542711)
J Am Geriatr Soc. 2005 Apr;53(4):695-9. (PMID: 15817019)
Front Aging Neurosci. 2015 Jan 21;7:1. (PMID: 25653617)
J Alzheimers Dis. 2020;75(4):1153-1168. (PMID: 32390630)
Mol Autism. 2024 Aug 7;15(1):34. (PMID: 39113134)
J Neurosci Methods. 2021 Jan 1;347:108951. (PMID: 33017644)
Neuroimage. 2020 Mar;208:116450. (PMID: 31821869)
Magn Reson Med. 2012 Mar;67(3):844-55. (PMID: 22183751)
Front Neurosci. 2020 May 06;14:396. (PMID: 32435181)
Neuroimage. 2015 Aug 15;117:40-55. (PMID: 26004503)
Neuroimage Clin. 2020;27:102355. (PMID: 32736325)
Aging Dis. 2023 Nov 15;15(6):2770-2785. (PMID: 38029401)
Neuroimage. 2007 May 1;35(4):1459-72. (PMID: 17379540)
NPJ Parkinsons Dis. 2021 Jun 25;7(1):51. (PMID: 34172728)
Magn Reson Med. 2016 Nov;76(5):1574-1581. (PMID: 26745823)
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. (PMID: 19059349)
Neuroimage. 2014 Dec;103:411-426. (PMID: 25109526)
Hum Brain Mapp. 2016 Dec;37(12):4550-4565. (PMID: 27477113)
Alzheimers Dement. 2011 May;7(3):263-9. (PMID: 21514250)
Neuroimage Clin. 2018 Feb 22;18:608-616. (PMID: 29845009)
Psychol Bull. 1992 Jul;112(1):155-9. (PMID: 19565683)
Alzheimers Dement. 2012;8(2):105-13. (PMID: 22404852)
Brain. 2018 Mar 1;141(3):888-902. (PMID: 29309541)
Grant Information:
JP24wm0625310 Brain/MINDS Beyond Program of the Japan Agency for Medical Research and Development (AMED); 23K14927 Japan Society for the Promotion of Science (KAKENHI); JP18dm0307004 Brain/MINDS Beyond Program of the Japan Agency for Medical Research and Development (AMED); JPMJFR231P JST FOREST Program; U01 AG024904 United States AG NIA NIH HHS; JP19dm0307101 Brain/MINDS Beyond Program of the Japan Agency for Medical Research and Development (AMED); 23K27556 Japan Society for the Promotion of Science (KAKENHI); Juntendo Research Branding Project for Training Experts in Statistical Sciences; JP21wm0425006 Brain/MINDS Beyond Program of the Japan Agency for Medical Research and Development (AMED); DE240101035 Australian Research Council Discovery Early Career Researcher Award; 23H02865 Japan Society for the Promotion of Science (KAKENHI)
Contributed Indexing:
Keywords: Alzheimer's disease; ComBat harmonisation; fixel‐based analysis; multi‐centre dMRI studies; travelling subject
Entry Date(s):
Date Created: 20251112 Date Completed: 20251113 Latest Revision: 20251205
Update Code:
20251206
PubMed Central ID:
PMC12606591
DOI:
10.1002/hbm.70408
PMID:
41222163
Database:
MEDLINE

Weitere Informationen

Fixel-based analysis (FBA) is an advanced diffusion MRI analysis technique that facilitates the evaluation of white matter microstructure within 'fixels' (specific fibre populations within a voxel). In recent years, FBA has gained prominence for its ability to better characterise fibre tract-specific changes than the more conventional diffusion MRI approaches and has shown promise in elucidating the pathophysiology of psychiatric and neurological diseases. However, FBA has been predominantly limited to single-centre studies, minimising the generalisability of the technique. In this study, the popular ComBat harmonisation technique was adapted for whole-brain FBA of diffusion MRI data. The study evaluates the effectiveness of ComBat in harmonising FBA metrics of fibre density, fibre cross-section and the combined metric of fibre density and cross-section in a large travelling subject dataset (n = 49, scan = 162). Participants were scanned across multiple centres, using different scanner models and imaging protocols, and FBA metrics were compared under these varying conditions before and after harmonisation. In addition, the impact of ComBat harmonisation on disease-related findings was evaluated in an independent multi-centre Alzheimer's disease (AD) dataset, by comparing the same fixel-based measures in patients with AD (n = 27) to those in cognitively normal control participants (n = 29) before and after ComBat harmonisation. We demonstrated that ComBat harmonisation effectively mitigated variability across scanner sites, scanner models, and protocols, in the travelling subject dataset, thus enhancing the comparability of FBA metrics. Notably, ComBat harmonisation improved the detection of AD-related changes in the fornix, a critical white matter tract associated with cognitive function, and strengthened the correlations between FBA metrics and cognitive scores. These results underscore the potential of ComBat harmonisation in enhancing the reliability of multi-centre neuroimaging studies, supporting the use of harmonisation techniques for accurate detection of disease-specific changes in neurodegenerative conditions. The ability to perform ComBat harmonisation within the whole-brain FBA pipeline may help further this fibre-specific technique into large-scale multi-centre studies.
(© 2025 The Author(s). Human Brain Mapping published by Wiley Periodicals LLC.)